Monthly stream temperatures along the Danube River: Statistical analysis and predictive modelling with incremental climate change scenarios

Author:

Pekárová Pavla1,Bajtek Zbyněk1,Pekár Ján2,Výleta Roman3,Bonacci Ognjen4,Miklánek Pavol1,Belz Jörg Uwe5,Gorbachova Liudmyla6

Affiliation:

1. Slovak Academy of Sciences, Institute of Hydrology , Dúbravská cesta 9 , Bratislava , Slovakia

2. Comenius University in Bratislava, Faculty of Mathematics, Physics, and Informatics , Department of Applied Mathematics and Statistics , Mlynská dolina , Bratislava , Slovakia

3. Faculty of Civil Engineering, Department of Land and Water Resources Management , Radlinského 11, 810 05 Bratislava , Slovak University of Technology in Bratislava , Slovakia

4. Faculty of Civil Engineering, Architecture and Geodesy , University of Split , Matice hrvatske 15 , , Croatia

5. Federal Institute of Hydrology , Am Mainzer Tor 1 , Koblenz , Germany

6. Ukrainian Hydrometeorological Institute , 37 Nauki Prospect , Kyiv-28 , Ukraine

Abstract

Abstract The aim of the study is to analyse changes and predict the course of mean monthly water temperatures of the Danube River at various locations for the future. The first part of the study involves conducting a statistical analysis of the annual and monthly average air temperatures, water temperatures, and discharges along the Danube River. The study examines long-term trends, changes in the trends, and multiannual variability in the time series. The second part of the study focuses on simulating the average monthly water temperatures using Seasonal Autoregressive Integrated Moving Average (SARIMA) models and nonlinear regression models (NonL), based on two RCP based incremental mean monthly air temperature scenarios. To assess the impact of future climate on stream temperatures, the historical long-term average of the monthly water temperature (1990–2020) was compared with scenarios S1 (2041–2070) and S2 (2071–2100). The simulation results from the two stochastic models, the SARIMA and NonL, showed that in scenario S1, the Danube River’s average monthly water temperature is projected to increase by 0.81/0.82°C (Passau), 0.55/0.71°C (Bratislava), and 0.68/0.56°C (Reni). In scenario S2, the models predict higher increases: 2.83/2.50°C (Passau), 2.06/2.46°C (Bratislava), and 2.52/1.90°C (Reni). Overall, the SARIMA model proved to be more stable and effective in simulating the increase in monthly water temperatures in the Danube River.

Publisher

Walter de Gruyter GmbH

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3