Framework of an Evolutionary Multi-Objective Optimisation Method for Planning a Safe Trajectory for a Marine Autonomous Surface Ship

Author:

Szłapczyński Rafał1,Ghaemi Hossein1

Affiliation:

1. Gdańsk University of Technology , Poland

Abstract

Abstract This paper represents the first stage of research into a multi-objective method of planning safe trajectories for marine autonomous surface ships (MASSs) involved in encounter situations. Our method applies an evolutionary multi-objective optimisation (EMO) approach to pursue three objectives: minimisation of the risk of collision, minimisation of fuel consumption due to collision avoidance manoeuvres, and minimisation of the extra time spent on collision avoidance manoeuvres. Until now, a fully multi-objective optimisation has not been applied to the real-time problem of planning safe trajectories; instead, this optimisation problem has usually been reduced to a single aggregated cost function covering all objectives. The aim is to develop a method of planning safe trajectories for MASSs that is able to simultaneously pursue the three abovementioned objectives, make decisions in real time and without interaction with a human operator, handle basic types of encounters (in open or restricted waters, and in good or restricted visibility) and guarantee compliance with the International Regulations for Preventing Collisions at Sea. It should also be mentioned that optimisation of the system based on each criterion may occur at the cost of the others, so a reasonable balance is applied here by means of a configurable trade-off. This is done throughout the EMO process by means of modified Pareto dominance rules and by using a multi-criteria decision-making phase to filter the output Pareto set and choose the final solution

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Ocean Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Evolution of Maritime Technology Development: A Dynamic Positioning System Perspective of Maritime Autonomous Surface Ship;WMU Journal of Maritime Affairs;2024-07-24

2. A Multi-Ship Collision Avoidance Algorithm Using Data-Driven Multi-Agent Deep Reinforcement Learning;Journal of Marine Science and Engineering;2023-11-01

3. Maintaining Symmetry in Optimal and Safe Control of the Ship to Avoid Collisions at Sea;Symmetry;2023-05-02

4. A Nature Inspired Collision Avoidance Algorithm for Ships;TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation;2023

5. Modern Method Based on Artificial Intelligence for Safe Control in the Marine Environment;TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3