Affiliation:
1. College of Marine Engineering , Dalian Maritime University , China
Abstract
Abstract
Turbocharger turbine blades suffer from periodic vibration and flow induced excitation. The blade vibration signal is a typical non-stationary and sometimes nonlinear signal that is often encountered in turbomachinery research and development. An example of such signal is the pulsating pressure and strain signals measured during engine ramp to find the maximum resonance strain or during engine transient mode in applications. As the pulsation signals can come from different disturbance sources, detecting the weak useful signals under a noise background can be difficult. For this type of signals, a novel method based on optimal parameters of Ensemble Empirical Mode Decomposition (EEMD) and Teager Energy Operator (TEO) is proposed. First, an optimization method was designed for adaptive determining appropriate EEMD parameters for the measured vibration signal, so that the significant feature components can be extracted from the pulsating signals. Then Correlation Kurtosis (CK) is employed to select the sensitive Intrinsic Mode Functions (IMFs). In the end, TEO algorithm is applied to the selected sensitive IMF to identify the characteristic frequencies. A case of measured sound signal and strain signal from a turbocharger turbine blade was studied to demonstrate the capabilities of the proposed method.
Subject
Mechanical Engineering,Ocean Engineering
Reference21 articles.
1. 1. H. Hackenberg, A. Hartung: An approach for estimating the effect of transient sweep through a resonance, in: Proceedings of ASME Turbo Expo 2015: Turbomachinery Technical Conference and Exposition, 2015, pp. 1-11.10.1115/GT2015-42163
2. 2. S. Yeung, R. M. Murray: Reduction of bleed valve rate requirements for control of rotating stall using continuous air injection, IEEE International Conference on Control Applications. 1997, pp.683-690.
3. 3. Y. H. Wu, J. Wu, H. Zhang, W. Chu: Experimental and numerical investigation of near-tip flow field in an axial flow compressor rotor-Part II: Flow characteristics at stall inception condition, ASME Turbo Expo 2013: Turbine Technical Conference & Exposition, 2013, pp.67-73.
4. 4. Z. Peng, F. Chu: Application of the wavelet transform in machine condition monitoring and fault diagnostics: a review with bibliography, Mechanical systems and Signal Processing, 18 (2004), pp. 199-221.
5. 5. N. E. Huang, Z. Shen, S.R. Long, M.L. Wu, H.H. Shih, Q. Zheng, N.C. Yen, C.C. Tung, H.H. Liu: The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis, Proceedings of the Royal Society of London, Series A, 454(1998) pp. 903-995.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献