A Novel Time–Frequency Feature Fusion Approach for Robust Fault Detection in a Marine Main Engine

Author:

Je-Gal Hong1,Lee Seung-Jin1,Yoon Jeong-Hyun1ORCID,Lee Hyun-Suk1,Yang Jung-Hee2,Kim Sewon1ORCID

Affiliation:

1. Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Republic of Korea

2. Smart Ship Solution Department, Hanwha Ocean Co., Ltd., Seoul 04527, Republic of Korea

Abstract

Ensuring operational reliability in machinery requires accurate fault detection. While time-domain vibration pulsation signals are intuitive for pattern recognition and feature extraction, downsampling can reduce analytical complexity, but may result in low-precision data, affecting fault detection performance. To address this, we propose time–frequency feature fusion, combining information from both the time and frequency domains for fault detection. Our approach transforms vibrational pulse data into instantaneous revolutions per minute (RPM) and employs statistical analysis for the time-domain features. For the frequency-domain features, we use the combined method of empirical mode decomposition and independent component analysis (EMD-ICA), along with the Wigner bispectrum method to capture the nonlinear characteristics and phase conjugation. Using a deep neural network (DNN), we classify the anomaly states, demonstrating the effectiveness and versatility of our approach in detecting anomalies and improving diagnostic precision. Compared to using time or frequency features alone, our time–frequency feature fusion model achieves higher accuracy, with 100% accuracy at lower downsampling rates and 96.3% accuracy at a downsampling rate of 100×.

Funder

MSIT (Ministry of Science and ICT), Republic of Korea

ITRC

IITP

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference39 articles.

1. Unctad (2021). Review of Maritime Transport 2021, UN.

2. (2023, June 21). International Maritime Organization. IMO MASS Guide (Autonomous Shipping). Available online: https://www.imo.org/en/MediaCentre/HotTopics/Pages/Autonomous-shipping.aspx.

3. Felski, A., and Zwolak, K. (2020). The ocean-going autonomous ship—Challenges and threats. J. Mar. Sci. Eng., 8.

4. Developing a predictive maintenance model for vessel machinery;Jimenez;J. Ocean Eng. Sci.,2020

5. Diesel engine fuel injection monitoring using acoustic measurements and independent component analysis;Albarbar;Measurement,2010

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3