Universal Autonomous Control and Management System for Multipurpose Unmanned Surface Vessel

Author:

Stateczny Andrzej1,Burdziakowski Pawel2

Affiliation:

1. Gdańsk University of Technology , Poland, Marine Technology Ltd . Poland

2. Gdańsk University of Technology , Poland

Abstract

Abstract The paper presents design, structure and architecture of the Universal Autonomous Control and Management System (UACAMS) for multipurpose unmanned surface vessel. The system was designed, installed and implemented on the multipurpose platform - unmanned surface vessel named HydroDron. The platform is designed to execute hydrographic survey missions with multi-variant configuration of the survey system (payload?) including multi-beam echo sounder, sonar, LiDAR, automotive radar, photographic and spectral camera systems. The UACAMS designed to provide flexibility that enables to operate on the different kind of surface platform and different type of functional payload. The full system configuration provides all four level of autonomy starting from remotely controlled to full autonomous mission. Each level can be implemented and run depending on user specific requirements. The paper explains the differences between autonomous and automatic mission and shows how the autonomy is implemented into the presented system. The full hardware structural design as well as the software architecture are described. In order to confirm initial assumptions the applied system was tested during four- week sea trials and tuned for a selected vessel to confirm assumptions. In the project, also the original shore control station was designed, produced and tested for the vessel, including specific user controls and radio communication system. Conclusions sum up all crucial points of the design and system implementation process.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3