Impacts of forest spatial structure on variation of the multipath phenomenon of navigation satellite signals

Author:

Brach Michał1,Stereńczak Krzysztof2,Bolibok Leszek3,Kwaśny Łukasz1,Krok Grzegorz2,Laszkowski Michał2

Affiliation:

1. Warsaw University of Life Sciences – SGGW , Faculty of Forestry, Department of Geomatics and Land Management , Nowoursynowska 159, 02-776 Warsaw , Poland , phone: +48 602487647, fax: +48225938239,

2. Forest Research Institute, Department of Geomatics , Sękocin Stary, Braci Leśnej 3, 05-090 Raszyn , Poland

3. Warsaw University of Life Sciences – SGGW , Faculty of Forestry, Department of Silviculture , Nowoursynowska 159, 02-776 Warsaw , Poland

Abstract

Abstract The GNSS (Global Navigation Satellite System) receivers are commonly used in forest management in order to determine objects coordinates, area or length assessment and many other tasks which need accurate positioning. Unfortunately, the forest structure strongly limits access to satellite signals, which makes the positioning accuracy much weak comparing to the open areas. The main reason for this issue is the multipath phenomenon of satellite signal. It causes radio waves reflections from surrounding obstacles so the signal do not reach directly to the GNSS receiver’s antenna. Around 50% of error in GNSS positioning in the forest is because of multipath effect. In this research study, an attempt was made to quantify the forest stand features that may influence the multipath variability. The ground truth data was collected in six Forest Districts located in different part of Poland. The total amount of data was processed for over 2,700 study inventory plots with performed GNSS measurements. On every plot over 25 forest metrics were calculated and over 25 minutes of raw GNSS observations (1500 epochs) were captured. The main goal of this study was to find the way of multipath quantification and search the relationship between multipath variability and forest structure. It was reported that forest stand merchantable volume is the most important factor which influence the multipath phenomenon. Even though the similar geodetic class GNSS receivers were used it was observed significant difference of multipath values in similar conditions.

Publisher

Walter de Gruyter GmbH

Subject

Ecology,Forestry

Reference77 articles.

1. Akbulut, R., Ucar, Z., Bettinger, P., Merry, K., Obata, S. 2017. Effects of forest thinning on static horizontal positions collected with a mapping-grade GNSS receiver. Mathematical and Computational Forestry and Natural Resource Sciences (MCFNS), 9 (1), 14–21.

2. Al-Shaery, A., Zhang, S., Rizos, C. 2013. An enhanced calibration method of GLONASS inter-channel bias for GNSS RTK. GPS Solutions, 17 (2), 165–173.10.1007/s10291-012-0269-5

3. Bakula, M., Przestrzelski, P., Kazmierczak, R. 2015. Reliable Technology of Centimeter GPS/GLO-NASS Surveying in Forest Environments. IEEE Transactions on Geoscience and Remote Sensing, 53 (2), 1029–1038.

4. Bastos, A.S., Hasegawa, H. 2013. Behavior of GPS signal interruption probability under tree canopies in different forest conditions. European Journal of Remote Sensing, 46 (1), 613–622.

5. Bettinger, P., Merry, K. 2012. Static horizontal positions determined with a consumer-grade GNSS receiver: One assessment of the number of fixes necessary. Croatian Journal of Forest Engineering, 33 (1), 149–157.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3