Pattern Synthesis Using Multiple Kernel Learning for Efficient SVM Classification

Author:

Seetha Hari,Saravanan R.,Murty M. Narasimha

Abstract

Abstract Support Vector Machines (SVMs) have gained prominence because of their high generalization ability for a wide range of applications. However, the size of the training data that it requires to achieve a commendable performance becomes extremely large with increasing dimensionality using RBF and polynomial kernels. Synthesizing new training patterns curbs this effect. In this paper, we propose a novel multiple kernel learning approach to generate a synthetic training set which is larger than the original training set. This method is evaluated on seven of the benchmark datasets and experimental studies showed that SVM classifier trained with synthetic patterns has demonstrated superior performance over the traditional SVM classifier.

Publisher

Walter de Gruyter GmbH

Subject

General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Learning From Imbalanced Data;Advances in Computer and Electrical Engineering;2019

2. Learning From Imbalanced Data;Encyclopedia of Information Science and Technology, Fourth Edition;2018

3. On Improving the Classification of Imbalanced Data;Cybernetics and Information Technologies;2017-03-01

4. Efficient High Dimensional Data Classification;Encyclopedia of Business Analytics and Optimization;2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3