Affiliation:
1. M. S. Ramaiah Institute of Technology, India
2. Vellore Institute of Technology, India
Abstract
A very challenging issue in real-world data is that in many domains like medicine, finance, marketing, web, telecommunication, management, etc. the distribution of data among classes is inherently imbalanced. A widely accepted researched issue is that the traditional classifier algorithms assume a balanced distribution among the classes. Data imbalance is evident when the number of instances representing the class of concern is much lesser than other classes. Hence, the classifiers tend to bias towards the well-represented class. This leads to a higher misclassification rate among the lesser represented class. Hence, there is a need of efficient learners to classify imbalanced data. This chapter aims to address the need, challenges, existing methods, and evaluation metrics identified when learning from imbalanced data sets. Future research challenges and directions are highlighted.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献