Deep learning-based security situational awareness and detection technology for power networks in the context of big data

Author:

Gong Xiaogang1,Wu Xinyu1,Zhou Xuxiang1

Affiliation:

1. 1 Information and Communication Branch of State Grid Zhejiang Electric Power Co ., Hangzhou, Zhejiang , , China .

Abstract

Abstract With the comprehensive promotion of “big data + energy”, new power network security threats are also more prominent, and the traditional security system mainly based on “protection” will face great challenges. Firstly, this paper proposes four kinds of network security situational awareness detection techniques based on distributed data analysis by combining the characteristics of big data in power networks. Secondly, the CRIT-LSTM power network security situational awareness model is constructed by improving its loss evaluation process using the cross entropy (CE) function and improving the LSTM unit structure using linear unit (ReLU). Finally, the performance of the three models is compared and analyzed under two aspects of neural network training and testing and various metrics to verify the models’ effectiveness. The results show that the improved CRIT-LSTM model based on deep learning, combining LSTM and ReLU algorithms, has an RMSE of 0.717 for the training set and 0.806 for the test set. 7.32% accuracy and 10.51% improvement in recall compared to the LSTM-only model. The power network security situational awareness model based on the CRIT-LSTM model proposed in this paper integrates various security system functions to maximize the defense against attacks and reduce unnecessary security risk losses.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Engineering (miscellaneous),Modeling and Simulation,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3