Fabrication and amplified spontaneous emission behavior of FAPbBr3 perovskite quantum dots in solid polymer rods

Author:

Naziruddin Khan M.1,Almohammedi Abdullah1

Affiliation:

1. Department of Physics, Faculty of Science , Islamic University , Madinah , Saudi Arabia

Abstract

Abstract Formamidinium lead tribromide (FAPbBr3) perovskite quantum dot (PQ-Dot) solution was incorporated in a polymer sol, which was used to fabricate solid nanocomposite rods and disks. The solid nanocomposite samples were studied by different characterization techniques. The absorption, emission, and excitation spectra of the PQ-Dot in the solid rods/disks were quite significant as compared to the spectra of the PQ-Dot solution. Scanning electron microscopy (SEM) was used to inspect the structural morphology of the PQ-Dot in the solid environment. The PQ-Dot particles were evidently present in the solid matrix and were confirmed by the SEM images and energy dispersive X-ray spectroscopy (EDX) spectra. The size of the PQ-Dots was examined by transmission electron microscopy (TEM). The majority of the particles were about 3–8 nm in size. The spontaneous and stimulated emission profiles of the solid composite rods/disks were studied using pumping energy ranging from 2 μJ to 18 μJ from a high-power picosecond neodymium-doped yttrium aluminum garnet (Nd:YAG) tunable laser system. The observed emission signal was quite significant. The emission peak of the PQ-Dot solution had a slight change when it was included in the solid matrix. Amplified spontaneous emission (ASE) behavior was obtained from the PQ-Dot composite rod. The ASE peaks were quite steady at different levels of excitation energy. ASE was achieved at low threshold energy. The composite rod with ASE behavior indicates that it is a promising composite material that can be used to achieve lasing in the future. The ASE obtained from the composite rods/disks may improve to achieve lasing if a high concentration of PQ-Dot solution is used in the matrix.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3