Affiliation:
1. Faculty of Mechanical Engineering , Wrocław University of Science and Technology , 5 Łukasiewicza Street , Wrocław , Poland
Abstract
Abstract
Aerosol jet printing is a contactless direct-write technique that could be used for the deposition of a variety of materials. First, used for electric paths, the technology was explored for many applications. The substantial part of the process is the generation of aerosols. The size of the droplets and the stability of the process affect the quality of the sprayed lines. This article investigates the diameter of the sprayed droplets, allowing future comparison of the results with sprayed lines. Droplets from ultrasonic and pneumatic generators were sprayed at their outlet on the polyethylene terephthalate (PET) foil. Using a digital microscope and the built-in algorithm, the diameter of the droplets was measured, and the dataset was collected as CSV files and served as a background to the box plot. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) scans were applied to verify the results obtained. The ink parameters used in the process have an influence on the aerosol generation and droplet diameter, whereas the carrier gas pressure has an impact mostly on the droplet diameter. In this case, the aerosol was produced from three types of ink in combination with two generators. For inks with a dynamic viscosity below 6.5 m·Pa−1·s−1 a stable range of 5–10 μm droplet diameter was observed. A high-viscosity ink (7.5–10.5 m·Pa−1·s−1) produced droplets with diameter in the range of 6–25 μm. The diameter of the droplet decreased from 7–22 μm to 1–5 μm with a reduction in the dynamic viscosity from 7.5–10.5 m·Pa−1·s−1 to 4.5–5.5 m·Pa−1·s−1.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献