Investigation of aerosol droplets diameter generated in aerosol jet printing

Author:

Łapa Wojciech1,Winnicki Marcin1,Orłowska Karolina1

Affiliation:

1. Faculty of Mechanical Engineering , Wrocław University of Science and Technology , 5 Łukasiewicza Street , Wrocław , Poland

Abstract

Abstract Aerosol jet printing is a contactless direct-write technique that could be used for the deposition of a variety of materials. First, used for electric paths, the technology was explored for many applications. The substantial part of the process is the generation of aerosols. The size of the droplets and the stability of the process affect the quality of the sprayed lines. This article investigates the diameter of the sprayed droplets, allowing future comparison of the results with sprayed lines. Droplets from ultrasonic and pneumatic generators were sprayed at their outlet on the polyethylene terephthalate (PET) foil. Using a digital microscope and the built-in algorithm, the diameter of the droplets was measured, and the dataset was collected as CSV files and served as a background to the box plot. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) scans were applied to verify the results obtained. The ink parameters used in the process have an influence on the aerosol generation and droplet diameter, whereas the carrier gas pressure has an impact mostly on the droplet diameter. In this case, the aerosol was produced from three types of ink in combination with two generators. For inks with a dynamic viscosity below 6.5 m·Pa−1·s−1 a stable range of 5–10 μm droplet diameter was observed. A high-viscosity ink (7.5–10.5 m·Pa−1·s−1) produced droplets with diameter in the range of 6–25 μm. The diameter of the droplet decreased from 7–22 μm to 1–5 μm with a reduction in the dynamic viscosity from 7.5–10.5 m·Pa−1·s−1 to 4.5–5.5 m·Pa−1·s−1.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3