Decision Trees in the Tests of Artillery Igniters

Author:

Ampuła Dariusz1

Affiliation:

1. Military Institute of Armament Technology

Abstract

Abstract The article addressed the method for building decision trees paying attention to the binary character of the tree structure. The methodology for building our decision tree for KW-4 igniters was presented. It involves determining features of tested igniters and applied predictors, which are necessary to create the correct model of the tree. The classification tree was built based on the possessed test results, determining the adopted post-diagnostic decision as the qualitative independent variable. The schema of the resultant classification tree and the full structure of this tree together with the results in end nodes were shown. The obtained graphic and tabular sequence of the designed tree was characterized, and the prediction accuracy was evaluated on the basis of the resultant matrix of incorrect classifications. The quality of the resultant predictive model was assessed on the basis of the chosen examples by means of the ‘ROC’ curve and the graph of the cumulative value of increase coefficient.

Publisher

Walter de Gruyter GmbH

Subject

Safety, Risk, Reliability and Quality

Reference8 articles.

1. 1. Amunicja wojsk lądowych. Ministry of National Defence Publishing House, Warszawa 1985.

2. 2. Breiman L., Friedman J.H., Olsen R.A., Stone C.J.: Classification and Regression Trees. Chapman & Hall, 1984.

3. 3. Cards from laboratory tests of igniters type KW-4. Archive Military Institute of Armament Technology (MIAT).

4. 4. Koronacki J., Ćwik J.: Statystyczne systemy uczące się. Akademicka Oficyna Wydawnicza Exit, Warszawa 2008.

5. 5. Łapczyński M., Demski T.: Data mining – metody predykcyjne. Statsoft Polska – materials from course, Kraków 2019.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3