Predictive data mining models in the tests of propelling charges

Author:

Ampuła Dariusz1ORCID

Affiliation:

1. Wojskowy Instytut Techniczny Uzbrojenia

Abstract

In the article, in the introduction, the concept of predictive data mining models and was defined and the purpose of the article was specified. Then, the method of building predic-tive models was characterized and the elements of ammunition were indicated, the test results of which were prepared for the building of models, and the types of ammunition in which the propellant charge is present were indicated. The results of building four data mining models are presented. Predictive models for C&RT, CHAID and exhaustive CHAID decision trees were designed and built. The fourth model analyzed was the SANN model, i.e. the model of neural networks. For each of the tree models, a schema of the designed tree, the rate of false predictions and the parameters of goodness of fit of the built models are shown. For the SANN model, the parameters of the selected neural network were addi-tionally characterized. An analysis of the built models was made and, based on the ob-tained results, the best designed predictive data mining model was indicated. At the end, the graphical form of the workspace predefined by the GC Advanced Comprehensive Classifiers project is shown.

Publisher

Index Copernicus

Subject

Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3