Irbesartan ameliorates diabetic kidney injury in db/db mice by restoring circadian rhythm and cell cycle

Author:

Zhao Hailing1,Li Zhiguo2,Yan Meihua1,Ma Liang3,Dong Xi1,Li Xin1,Zhang Haojun1,Li Ping1

Affiliation:

1. Beijing Key Lab Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China–Japan Friendship Hospital , Beijing , China

2. The Hebei Key Lab for Organ Fibrosis, the Hebei Key Lab for Chronic Disease, School of Public Health, International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan , Hebei Province , China

3. Clinical Laboratory, China–Japan Friendship Hospital , Beijing , China

Abstract

Abstract Background and Objectives Irbesartan has been widely used in the clinical treatment of diabetic kidney disease (DKD). However, the molecular mechanism of its delay of DKD disease progression has not been fully elucidated. The aim of the present study was to investigate the mechanism of irbesartan in the treatment of DKD. Materials and Methods C57BL/KsJ db/db mice were randomly divided into the model group and irbesartan-treated group. After treatment with irbesartan for 12 weeks, the effects on blood glucose, body weight, 24-h urinary albumin, and renal injuries were evaluated. Microarray was used to determine the differentially expressed genes (DEGs) in the renal cortex of mice. |Log FC| <0.5 and false discovery rate (FDR) <0.25 were set as the screening criteria. Kyoto Encyclopedia of Genes and Genomes (KEGG), gene ontology (GO), protein–protein interaction (PPI) network and modules, and microRNA (miRNA)-DEGs network analysis were applied to analyze the DEGs. Furthermore, quantitative real-time polymerase chain reaction (qRT-PCR) was used to validate the results of microarray. Results The present study demonstrated irbesartan could significantly improve the renal function in db/db mice through decreasing 24-h urinary albumin and alleviating the pathological injury of kidney. Irbesartan may affect the expression of numerous kidney genes involved in circadian rhythm, cell cycle, micoRNAs in cancer, and PI3K–AKT signaling pathway. In the miRNA-DEGs network, miR-1970, miR-703, miR-466f, miR-5135, and miR-132-3p were the potential targets for irbesartan treatment. The validation test confirmed that key genes regulating circadian rhythm (Arntl, Per3, and Dbp) and cell cycle (Prc1, Ccna2, and Ccnb2) were restored in db/db mice on treatment with Irbesartan. Conclusion Generally, irbesartan can effectively treat DKD by regulating the circadian rhythm and cell cycle. The DEGs and pathways identified in the study will provide new insights into the potential mechanisms of irbesartan in the treatment of DKD.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3