Losartan Ameliorates Calcium Oxalate-Induced Elevation of Stone-Related Proteins in Renal Tubular Cells by Inhibiting NADPH Oxidase and Oxidative Stress

Author:

Qin Baolong1ORCID,Wang Qing1ORCID,Lu Yuchao1ORCID,Li Cong1ORCID,Hu Henglong1ORCID,Zhang Jiaqiao1ORCID,Wang Yufeng1ORCID,Zhu Jianning1ORCID,Zhu Yunpeng1ORCID,Xun Yang1ORCID,Wang Shaogang1ORCID

Affiliation:

1. Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China

Abstract

Calcium oxalate (CaOx) is the most common type of urinary stone. Increase of ROS and NADPH oxidase gives rise to inflammation and injury of renal tubular cells, which promotes CaOx stone formation. Recent studies have revealed that the renin-angiotensin system might play a role in kidney crystallization and ROS production. Here, we investigated the involvement of Ang II/AT1R and losartan in CaOx stone formation. NRK-52E cells were incubated with CaOx crystals, and glyoxylic acid-induced hyperoxaluric rats were treated with losartan. Oxidative stress statuses were evaluated by detection of ROS, oxidative products (8-OHdG and MDA), and antioxidant enzymes (SOD and CAT). Expression of NADPH oxidase subunits (Nox2 and Nox4), NF-κB pathway subunits (p50 and p65), and stone-related proteins such as OPN, CD44, and MCP-1 was determined by Western blotting. The results revealed upregulation of Ang II/AT1R by CaOx treatment. CaOx-induced ROS and stone-related protein upregulation were mediated by the Ang II/AT1R signaling pathway. Losartan ameliorated renal tubular cell expression of stone-related proteins and renal crystallization by inhibiting NADPH oxidase and oxidative stress. We conclude that losartan might be a promising preventive and therapeutic candidate for hyperoxaluria nephrolithiasis.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Cell Biology,Ageing,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3