Affiliation:
1. State Geological Institute of Dionýz Štúr , Department of Geological Information Systems , Mlynská Dolina 1, SK – 817 04 Bratislava 11, Slovak Republic
2. National Forest Centre - Forest Research Institute Zvolen , T. G. Masaryka 2175/22, SK – 960 01 Zvolen , Slovak Republic
Abstract
Abstract
Advanced remote sensing technologies has recently become an effective tool for monitoring of forest ecosystems. However, there is a growing need for online dissemination of geospatial data from these activities. We developed and assessed a framework which integrates (1) an algorithm for estimation of forest stand variables based on remote sensing data and (2) a web-map application for 2D and 3D visualisation of geospatial data. The performance of proposed framework was assessed in a Forest Management Unit Vígľaš (Slovakia, Central Europe) covering a total area of 12,472 ha. The mean error of remote sensing-based estimations of forest resources reached values of 16.4%, 12.1%, –26.8%, and –35.4% for the mean height, mean diameter, volume per hectare, and trees per hectare, respectively. The web-map application is stable and allows real-time visualization of digital terrain model, aerial imagery, thematic maps used in forestry or geology, and 968,217 single trees at forest management unit level.
Reference24 articles.
1. Cibulka, D., 2012: Uplatnenie webových služieb pri srístupňovaní a spracovaní geodát. Ph.D. dissertation, Bratislava, Stavebná fakulta, STU v Bratislave.
2. Coomes, D. A., Dalponte, M., Jucker, J., Asner, G.P., Banin, L. F., Burslem, D. F. R. P.et al., 2017: Area-based vs tree-centric approaches to mapping forest carbon in Southeast Asian forests from airborne laser scanning data. Remote Sensing of Environment, 194:77–88.10.1016/j.rse.2017.03.017
3. Ginzler, Ch., Waser, L. T., 2017: Entwicklungen im Bereich der Fernerkundung für forstliche Anwendungen. Schweizerische Zeitschrift für Forstwesen, 168:118–126.10.3188/szf.2017.0118
4. Kandare, K., Dalponte, M., Ørka, H. O., Frizzera, L., Næsset, E., 2017: Prediction of Species-Specific Volume Using Different Inventory Approaches by Fusing Airborne Laser Scanning and Hyperspectral Data. Remote Sensing, 9:400.10.3390/rs9050400
5. Lamb, S. M., MacLean, D. A., Hennigar, C. R., Pitt, D. G., 2018: Forecasting Forest Inventory Using Imputed Tree Lists for LiDAR Grid Cells and a Tree-List Growth Model. Forests, 9:167.10.3390/f9040167