A comparison of different methods for assessing leaf area index in four canopy types

Author:

Ariza-Carricondo Cristina1,Di Mauro Francesca2,de Beeck Maarten Op1,Roland Marilyn1,Gielen Bert1,Vitale Domenico2,Ceulemans Reinhart13,Papale Dario2

Affiliation:

1. University of Antwerp , Department of Biology, Research Center of Excellence on Plants and Ecosystems , Universiteitsplein 1, B–2610 Wilrijk , Belgium

2. University of Tuscia , Department for Innovation in Biological, Agro-food and Forest systems (DIBAF) , Via C. de Lellis, 01100 Viterbo , Italy

3. CzechGlobe, SustES, Belidla 4a, CZ–603 00 Brno , Czech Republic

Abstract

Abstract The agreement of Leaf Area Index (LAI) assessments from three indirect methods, i.e. the LAI–2200 Plant Canopy Analyzer, the SS1 SunScan Canopy Analysis System and Digital Hemispherical Photography (DHP) was evaluated for four canopy types, i.e. a short rotation coppice plantation (SRC) with poplar, a Scots pine stand, a Pedunculate oak stand and a maize field. In the SRC and in the maize field, the indirect measurements were compared with direct measurements (litter fall and harvesting). In the low LAI range (0 to 2) the discrepancies of the SS1 were partly explained by the inability to properly account for clumping and the uncertainty of the ellipsoidal leaf angle distribution parameter. The higher values for SS1 in the medium (2 to 6) to high (6 to 8) ranges might be explained by gap fraction saturation for LAI–2200 and DHP above certain values. Wood area index –understood as the woody light-blocking elements from the canopy with respect to diameter growth– accounted for overestimation by all indirect methods when compared to direct methods in the SRC. The inter-comparison of the three indirect methods in the four canopy types showed a general agreement for all methods in the medium LAI range (2 to 6). LAI–2200 and DHP revealed the best agreement among the indirect methods along the entire range of LAI (0 to 8) in all canopy types. SS1 showed some discrepancies with the LAI–2200 and DHP at low (0 to 2) and high ranges of LAI (6 to 8).

Publisher

Walter de Gruyter GmbH

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3