Estimation of Leaf Area Index in a Typical Northern Tropical Secondary Monsoon Rainforest by Different Indirect Methods

Author:

Xie Xiansheng123ORCID,Yang Yuanzheng12ORCID,Li Wuzheng4,Liao Nanyan4,Pan Weihu4,Su Hongxin12

Affiliation:

1. Key Laboratory of Environment Change and Resources Use in Beibu Gulf (Ministry of Education), Nanning Normal University, Nanning 530001, China

2. Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China

3. Research Institute of Forestry Policy and Information, Chinese Academy of Forestry, Beijing 100091, China

4. Guangxi Fangcheng Golden Camellia National Nature Reserve, Fangchenggang 538021, China

Abstract

The leaf area index (LAI) is a crucial indicator for quantifying forest productivity and community ecological processes. Satellite remote sensing can achieve large-scale LAI monitoring, but it needs to be calibrated and validated according to the in situ measurements on the ground. In this study, we attempted to use different indirect methods to measure LAI in a tropical secondary forest. These methods included the LAI-2200 plant canopy analyzer (LAI-2200), Digital Hemispherical Photography (DHP), Tracing Radiation and Architecture of Canopies (TRAC), and Terrestrial Laser Scanning (TLS) (using single-station and multi-station measurements, respectively). Additionally, we tried to correct the measured LAI by obtaining indicators of woody components and clumping effects. The results showed that the LAI of this forest was large, with estimated values of 5.27 ± 1.16, 3.69 ± 0.74, 5.86 ± 1.09, 4.93 ± 1.33, and 3.87 ± 0.89 for LAI-2200, DHP, TRAC, TLS multi-station, and TLS single-station, respectively. There was a significant correlation between the different methods. LAI-2200 was significantly correlated with all other methods (p < 0.01), with the strongest correlation with DHP (r = 0.684). TRAC was significantly correlated with TLS single-station (p < 0.01, r = 0.283). TLS multi-station was significantly correlated with TLS single-station (p < 0.05, r = 0.266). With the multi-station measurement method, TLS could maximize the compensation for measurement bias due to the shadowing effects. In general, the clumping index of this forest was 0.94 ± 0.05, the woody-to-total area ratio was 3.23 ± 2.22%, and the total correction coefficient was 1.03 ± 0.07. After correction, the LAI estimates for all methods were slightly higher than before, but there was no significant difference among them. Based on the performance assessment of existing ground-based methods, we hope to enhance the inter-calibration between methods to improve their estimation accuracy under complex forest conditions and advance the validation of remote sensing inversion of the LAI. Moreover, this study also provided a practical reference to promote the application of LiDAR technology in tropical forests.

Funder

the Guangxi Natural Science Foundation

the Foundation of Key Laboratory of Earth Surface Processes and Intelligent Simulation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3