Crop Water Status Analysis from Complex Agricultural Data Using UMAP-Based Local Biplot

Author:

Triana-Martinez Jenniffer Carolina12ORCID,Álvarez-Meza Andrés Marino1ORCID,Gil-González Julian3ORCID,De Swaef Tom4ORCID,Fernandez-Gallego Jose A.2ORCID

Affiliation:

1. Signal Processing and Recognition Group, Universidad Nacional de Colombia, Manizales 170003, Colombia

2. Programa de Ingeniería Electrónica, Facultad de Ingeniería, Universidad de Ibagué, Ibagué 730001, Colombia

3. Automatic Research Group, Universidad Tecnológica de Pereira, Pereira 660003, Colombia

4. Plant Sciences Unit, Flanders Research Institute for Agriculture Fisheries and Food (ILVO), 9090 Melle, Belgium

Abstract

To optimize growth and management, precision agriculture relies on a deep understanding of agricultural dynamics, particularly crop water status analysis. Leveraging unmanned aerial vehicles, we can efficiently acquire high-resolution spatiotemporal samples by utilizing remote sensors. However, non-linear relationships among data features, localized within specific subgroups, frequently emerge in agricultural data. Interpreting these complex patterns requires sophisticated analysis due to the presence of noise, high variability, and non-stationarity behavior in the collected samples. Here, we introduce Local Biplot, a methodological framework tailored for discerning meaningful data patterns in non-stationary contexts for precision agriculture. Local Biplot relies on the well-known uniform manifold approximation and projection method, such as UMAP, and local affine transformations to codify non-stationary and non-linear data patterns while maintaining interpretability. This lets us find important clusters for transformation and projection within a single global axis pair. Hence, our framework encompasses variable and observational contributions within individual clusters. At the same time, we provide a relevance analysis strategy to help explain why those clusters exist, facilitating the understanding of data dynamics while favoring interpretability. We demonstrated our method’s capabilities through experiments on both synthetic and real-world datasets, covering scenarios involving grass and rice crops. Moreover, we use random forest and linear regression models to predict water status variables from our Local Biplot-based feature ranking and clusters. Our findings revealed enhanced clustering and prediction capability while emphasizing the importance of input features in precision agriculture. As a result, Local Biplot is a useful tool to visualize, analyze, and compare the intricate underlying patterns and internal structures of complex agricultural datasets.

Funder

International Climate Fund from the Flemish Government, Belgium: Flanders Research Institute for Agriculture Fisheries and Food

Corporación Colombiana de Investigación Agropecuaria–Agrosavia

Universidad de Ibagué–Unibague

program “Beca de Excelencia Doctoral del Bicentenario, convocatoria de marzo de 2019”

project: “Prototipo funcional de lengua electrónica para la identificación de sabores en cacao fino de origen colombiano”

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3