The Green Hydrogen and the EU Gaseous Fuel Diversification Risks

Author:

Jansons L.12,Zemite L.1,Zeltins N.1,Bode I.1,Geipele I.2,Kiesners K.1

Affiliation:

1. Riga Technical University , Faculty of Electrical and Environmental Engineering , Institute of Power Engineering , 12-1 Azenes Str ., Riga , , Latvia

2. Riga Technical University , Faculty of Engineering Economics and Management , Institute of the Civil Engineering and Real Estate Economics , 6 Kalnciema Str. 210 , Riga , , Latvia

Abstract

Abstract Hydrogen is the most abundant chemical element on the Earth, and it has really a wide variety of applications, starting from use in refining, petrochemical industry, steel manufacturing, and ending with use in energy production and renewable gas (hereinafter – RG) blending for gradual replacement of natural gas in all sectors of the national economy. Being practically emission-free, if produced in sustainable way or from renewable energy sources (hereinafter – RES), hydrogen is regarded as one of the most promising energy sources for decarbonisation of practically the entire segment of industrial and energy production. Growing pressure of the European climate neutrality targets has triggered special interest in production, use, storage and transportation of hydrogen – especially the green one, which can be used in at least four fundamental ways: as a basic material, a fuel, an energy carrier and an energy storage medium. In the context of sector coupling, however, hydrogen facilitates decarbonisation of those industrial processes and economic sectors in which carbon dioxide (hereinafter – CO2) emissions can either not be reduced by electrification or this reduction would be minimal and linked to very high implementation costs. At the same time, development of an extensive hydrogen economy is the key to the achievement of the European climate protection targets, with the European Commission’s (hereinafter – EC) Hydrogen Strategy, a framework created in 2020 to develop and promote sustainable hydrogen economy in the European Union (hereinafter – EU), in its centre. Green hydrogen also will take its legitimate place in the gaseous fuel diversification risk management strategy, as this gaseous fuel is not only one of the most perspective future energy sources, but also one of the most volatile and demanding sources. In the process of gaseous fuel diversification in the EU and worldwide, new logistical chains and supply – demand networks of green hydrogen will emerge. Therefore, adequate addressing of potential challenges of this new regional and global production, delivery and consumption framework will be of utmost importance for secure, safe and predictable functioning of future energy systems.

Publisher

Walter de Gruyter GmbH

Subject

Psychiatry and Mental health,Neuropsychology and Physiological Psychology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3