Statistical Challenges in Combining Survey and Auxiliary Data to Produce Official Statistics

Author:

Erciulescu Andreea L.1,Cruze Nathan B.2,Nandram Balgobin3

Affiliation:

1. Westat, 1600 Research Blvd., Rockville M.D., U.S.A.

2. USDA National Agricultural Statistics Service, Research and Development Division , 1400 Independence Avenue, SW, Washington D.C., U.S.A.

3. Worcester Polytechnic Institute, Mathematical Sciences , Stratton Hall, 100 Institute Road, Worcester , MA 01609-2247, Massachusetts, 01609 , U.S.A.

Abstract

Abstract Combining survey and auxiliary data to produce official statistics is gaining interest at federal agencies and among policy makers due to its efficiency. Recent studies have shown the practicality of small area estimation modeling approaches in the context of integrating data from multiple sources to improve estimation at fine levels of aggregation. In this article, agricultural predictions are constructed using a hierarchical Bayes subarea-level model, fit to data available from different sources. Auxiliary data are initially used to complement the survey data and define the prediction space, and then to define covariates for the model. Finally, not-in-sample predictions are constructed using the model output, and benchmarking constraints are imposed on the final set of in-sample and not-in-sample predictions. Unlike most of the studies discussing not-in-sample prediction, this article illustrates a method that uses the data available from multiple sources to define the prediction space. As a consequence, the resulting framework provides a larger set of nationwide predictions as candidate for official statistics, and extrapolation is not of concern. Challenges in developing the methods to combine different data sources are discussed in the context of planted acreage prediction.

Publisher

Walter de Gruyter GmbH

Reference24 articles.

1. Boryan, C., Z. Yang, R. Mueller, and M. Craig. 2011. “Monitoring US agriculture: the US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program.” Geocarto International 26(5): 341–358. DOI: https://doi.org/10.1080/10106049.2011.562309.

2. Cruze, N.B., A.L. Erciulescu, B. Nandram, W.J. Barboza, and L.J. Young. 2019. “Producing Official County-Level Agricultural Estimates in the United States: Needs and Challenges.” Statistical Science 34(2): 301–316. DOI: https://doi.org/10.1214/18-STS687.

3. Cruze, N.B., A.L. Erciulescu, H. Benecha, V. Bejleri, B. Nandram, and L.J. Young. 2018. “Toward an Updated Publication Standard for Official County-Level Crop Estimates.” Joint Statistical Meetings Proceedings. Government Statistics Section. Alexandria, VA: American Statistical Association. 1576–1585. Available at: https://www.nass.usda.gov/Education_and_Outreach/Reports,_Presentations_and_Conferences/reports/conferences/JSM-2018/Toward_an_updated_publication_standard_for_official_county-level_crop_estimates.pdf(accessed September 2019).

4. Erciulescu, A.L., N.B. Cruze, and B. Nandram. 2018. “Benchmarking a Triplet of Official Statistics.” Environmental and Ecological Statistics 25: 523–547. DOI: https://doi.org/10/1007/s10651-018-0416-4.

5. Erciulescu, A.L., N.B. Cruze, and B. Nandram. 2019. “Model-Based County-Level Crop Estimates Incorporating Auxiliary Sources of Information.” Journal of the Royal Statistical Society, Series A 182: 283–303. DOI: https://doi.org/10/1111/rssa.12390.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3