Smoothing County-Level Sampling Variances to Improve Small Area Models’ Outputs

Author:

Chen LuORCID,Sartore LucaORCID,Benecha HabtamuORCID,Bejleri ValbonaORCID,Nandram BalgobinORCID

Abstract

The use of hierarchical Bayesian small area models, which take survey estimates along with auxiliary data as input to produce official statistics, has increased in recent years. Survey estimates for small domains are usually unreliable due to small sample sizes, and the corresponding sampling variances can also be imprecise and unreliable. This affects the performance of the model (i.e., the model will not produce an estimate or will produce a low-quality modeled estimate), which results in a reduced number of official statistics published by a government agency. To mitigate the unreliable sampling variances, these survey-estimated variances are typically modeled against the direct estimates wherever a relationship between the two is present. However, this is not always the case. This paper explores different alternatives to mitigate the unreliable (beyond some threshold) sampling variances. A Bayesian approach under the area-level model set-up and a distribution-free technique based on bootstrap sampling are proposed to update the survey data. An application to the county-level corn yield data from the County Agricultural Production Survey of the United States Department of Agriculture’s (USDA’s) National Agricultural Statistics Service (NASS) is used to illustrate the proposed approaches. The final county-level model-based estimates for small area domains, produced based on updated survey data from each method, are compared with county-level model-based estimates produced based on the original survey data and the official statistics published in 2016.

Publisher

MDPI AG

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3