1. [1] M. J. Ali, M. T. Akram, H. Saleem, B. Raza, A. R. Shahid, Glioma segmentation using ensemble of 2D/3D U-nets and survival prediction using multiple features fusion, Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, Lecture Notes in Comput. Sci., 12659 (2021), 189–199. ⇒7010.1007/978-3-030-72087-2_17
2. [2] U. Baid, S. Ghodasara, M. Bilello et al. The RSNA-ASNR-MICCAI BraTS 2021 benchmark on brain tumor segmentation and radiogenomic classification, CoRR, abs/2107.02314, 2021. ⇒51
3. [3] V. Badrinarayanan, A. Kendall, R. Cipolla, Segnet: A deep convolutional encoder-decoder architecture for image segmentation. CoRR, abs/1511.00561, 2015. ⇒56
4. [4] S. Bakas, M. Reyes, A. Jakab et al. Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge, CoRR, abs/1811.02629, 2018. ⇒51
5. [5] S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J. Kirby, J. Freymann, K. Farahani, C. Davatzikos, Segmentation labels for the pre-operative scans of the TCGA-GBM collection, 2017. ⇒52