Brain tumour segmentation framework with deep nuanced reasoning and Swin‐T

Author:

Xu Yang1,Yu Kun12,Qi Guanqiu3ORCID,Gong Yifei4,Qu Xiaolong5,Yin Li6,Yang Pan27ORCID

Affiliation:

1. College of Automation Chongqing University of Posts and Telecommunications Chongqing China

2. Emergency Department The Second Affiliated Hospital of Chongqing Medical University Chongqing China

3. Computer Information Systems Department State University of New York at Buffalo State Buffalo New York USA

4. Faculty of Applied Science & Engineering, The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE) University of Toronto Toronto Canada

5. Department of Cardiovascular Medicine, Southwest Hospital Army Medical University Chongqing China

6. Department of Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment Chongqing University Cancer Hospital Chongqing China

7. Department of Cardiovascular Surgery, Chongqing General Hospital University of Chinese Academy of Sciences Chongqing China

Abstract

AbstractTumour medical image segmentation plays a crucial role in clinical imaging diagnosis. Existing research has achieved good results, enabling the segmentation of three tumour regions in MRI brain tumour images. Existing models have limited focus on the brain tumour areas, and the long‐term dependency of features is weakened as the network depth increases, resulting in blurred edge segmentation of the targets. Additionally, considering the excellent segmentation performance of the Swin Transformer(Swin‐T) network, its network structure and parameters are relatively large. To address these limitations, this paper proposes a brain tumour segmentation framework with deep nuanced reasoning and Swin‐T. It is mainly composed of the backbone hybrid network (BHN) and the deep micro texture extraction module (DMTE). The BHN combines the Swin‐T stage with a new downsampling transition module called dual path feature reasoning (DPFR). The entire network framework is designed to extract global and local features from multi‐modal data, enabling it to capture and analyze deep texture features in multi‐modal images. It provides significant optimization over the Swin‐T network structure. Experimental results on the BraTS dataset demonstrate that the proposed method outperforms other state‐of‐the‐art models in terms of segmentation performance. The corresponding source codes are available at https://github.com/CurbUni/Brain‐Tumor‐Segmentation‐Framework‐with‐Deep‐Nuanced‐Reasoning‐and‐Swin‐T.

Funder

Natural Science Foundation of Chongqing Municipality

China Postdoctoral Science Foundation

Publisher

Institution of Engineering and Technology (IET)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3