Towards autoscaling of Apache Flink jobs

Author:

Varga Balázs1,Balassi Márton2,Kiss Attila3

Affiliation:

1. ELTE Eötvös Loránd University Budapest , Hungary

2. Cloudera , Budapest , Hungary

3. J. Selye University , Komárno , Slovakia

Abstract

Abstract Data stream processing has been gaining attention in the past decade. Apache Flink is an open-source distributed stream processing engine that is able to process a large amount of data in real time with low latency. Computations are distributed among a cluster of nodes. Currently, provisioning the appropriate amount of cloud resources must be done manually ahead of time. A dynamically varying workload may exceed the capacity of the cluster, or leave resources underutilized. In our paper, we describe an architecture that enables the automatic scaling of Flink jobs on Kubernetes based on custom metrics, and describe a simple scaling policy. We also measure the e ects of state size and target parallelism on the duration of the scaling operation, which must be considered when designing an autoscaling policy, so that the Flink job respects a Service Level Agreement.

Publisher

Walter de Gruyter GmbH

Reference21 articles.

1. [1] T. Abdelzaher, Y. Diao, J.L. Hellerstein, C. Lu, X, Zhu, Introduction to control theory and its application to computing systems, in: Performance Modeling and Engineering, Springer US, Boston, MA, 2008, 185–215. ⇒41

2. [2] B. Brazil, Prometheus: Up & Running : Infrastructure and Application Performance Monitoring, O’Reilly Media, Inc., 2018 ⇒44, 47

3. [3] P. Carbone, G. Fóra, S. Ewen, S. Haridi, K. Tzoumas, Lightweight asynchronous snapshots for distributed dataflows, arXiv preprint 1506.08603, 2015 ⇒40, 50

4. [4] P. Carbone, S. Ewen, G. Fóra, S. Haridi, S. Richter, K. Tzoumas, State management in Apache Flink: Consistent stateful distributed stream processing, in Proc. VLDB Endow. 10, 12 (2017) 1718–1729 ⇒40

5. [5] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, K. Tzoumas, Apache flink: Stream and batch processing in a single engine, Bulletin of the IEEE Computer Society Technical Committee on Data Engineering 38, 4 (2015) 28–38 ⇒39

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluating Stream Processing Autoscalers;Proceedings of the 18th ACM International Conference on Distributed and Event-based Systems;2024-06-24

2. Towards Evaluating Stream Processing Autoscalers;2023 IEEE 39th International Conference on Data Engineering Workshops (ICDEW);2023-04

3. HYAS: Hybrid Autoscaler Agent for Apache Flink;Lecture Notes in Computer Science;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3