State management in Apache Flink®

Author:

Carbone Paris1,Ewen Stephan2,Fóra Gyula3,Haridi Seif1,Richter Stefan2,Tzoumas Kostas2

Affiliation:

1. KTH Royal Institute of Technology

2. data Artisans

3. King Digital Entertainment Limited

Abstract

Stream processors are emerging in industry as an apparatus that drives analytical but also mission critical services handling the core of persistent application logic. Thus, apart from scalability and low-latency, a rising system need is first-class support for application state together with strong consistency guarantees, and adaptivity to cluster reconfigurations, software patches and partial failures. Although prior systems research has addressed some of these specific problems, the practical challenge lies on how such guarantees can be materialized in a transparent, non-intrusive manner that relieves the user from unnecessary constraints. Such needs served as the main design principles of state management in Apache Flink, an open source, scalable stream processor. We present Flink's core pipelined, in-flight mechanism which guarantees the creation of lightweight, consistent, distributed snapshots of application state, progressively, without impacting continuous execution. Consistent snapshots cover all needs for system reconfiguration, fault tolerance and version management through coarse grained rollback recovery. Application state is declared explicitly to the system, allowing efficient partitioning and transparent commits to persistent storage. We further present Flink's backend implementations and mechanisms for high availability, external state queries and output commit. Finally, we demonstrate how these mechanisms behave in practice with metrics and large-deployment insights exhibiting the low performance trade-offs of our approach and the general benefits of exploiting asynchrony in continuous, yet sustainable system deployments.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 169 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. LubeRDMA: A Fail-safe Mechanism of RDMA;Proceedings of the 8th Asia-Pacific Workshop on Networking;2024-08-03

2. A systematic survey on fault-tolerant solutions for distributed data analytics: Taxonomy, comparison, and future directions;Computer Science Review;2024-08

3. Optimizing Database Performance in Complex Event Processing through Indexing Strategies;Data;2024-07-24

4. Data Fabric for Industrial Metaverse;2024 IEEE 44th International Conference on Distributed Computing Systems Workshops (ICDCSW);2024-07-23

5. Texera: A System for Collaborative and Interactive Data Analytics Using Workflows;Proceedings of the VLDB Endowment;2024-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3