The Linguistic and Typological Features of Clickbait in Youtube Video Titles

Author:

Kemm Roy1ORCID

Affiliation:

1. Nago City Board of Education ; University of Birmingham

Abstract

AbstractThis exploratory study aims to identify which linguistic and typological features commonly associated with clickbait in online news headlines are indicative of clickbait in YouTube video titles. A comparative corpus analysis is conducted to compare YouTube video titles commonly associated with clickbait to titles not associated with clickbait. Results indicate that a majority of the typological and linguistic features associated with clickbait in online news headlines are found to be indicative of clickbait in YouTube video titles. However, the role which each of the features plays seems to differ to that of online news. The findings contribute to the understanding of clickbait in non-news contexts from a linguistics perspective, an area which has been relatively unexplored in the current literature.

Publisher

Walter de Gruyter GmbH

Subject

Education,Cultural Studies

Reference33 articles.

1. ALVES, L., ANTUNES, N., AGRICI, O., SOUSA, C., & RAMOS, C. (2016). Click Bait: You won’t believe what happens next!. Fronteiras: Journal of Social, Technological and Environmental Science, 5(2), 196–213. https://doi.org/10.21664/2238-8869.2016V5I2.P196-21310.21664/2238-8869.2016v5i2.p196-213

2. BIYANI, P., TSIOUTSIOULIKLIS, K., & BLACKMER, J. (2016, February 21). “8 Amazing secrets for getting more clicks”: Detecting clickbaits in news streams using article informality. [Conference proceedings]. Proceedings of the 13th AAAI Conference on Artificial Intelligence (pp. 94-100). AAAI-16, Phoenix, Arizona. AAAI Press. https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11807/1156910.1609/aaai.v30i1.9966

3. BLOM, J. N. & HANSEN, K. R. (2014). Click bait: Forward-reference as lure in online news headlines. Journal of Pragmatics, 76, 87–100. https://doi.org/10.1016/j.pragma.2014.11.01010.1016/j.pragma.2014.11.010

4. CHAKRABORTY, A., PARANJAPE, A., SOURYA, K., & NILOY, G. (2016). Stop Clickbait: Detecting and preventing clickbaits in online news media”. [Conference proceedings]. 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) (pp. 9–16). 2016 IEEE, San Francisco, California. IEEE. https://doi.org/10.48550/arXiv.1610.0978610.1109/ASONAM.2016.7752207

5. CHEN, Y., CONROY, N. J., & RUBIN, V. L. (2015). Misleading online content: Recognising clickbait as “False News”. [Conference proceedings]. Proceedings of the 2015 ACM on Workshop on Multimodal Deception Detection (pp. 15-19). 2015 ACM, Seattle, Washington. ACM. https://doi.org/10.1145/2823465.282346710.1145/2823465.2823467

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3