Comparison of recorded rainfall with quantitative precipitation forecast in a rainfall-runoff simulation for the Langat River Basin, Malaysia

Author:

Billa Lawal,Assilzadeh Hamid,Mansor Shattri,Mahmud Ahmed,Ghazali Abdul

Abstract

AbstractObserved rainfall is used for runoff modeling in flood forecasting where possible, however in cases where the response time of the watershed is too short for flood warning activities, a deterministic quantitative precipitation forecast (QPF) can be used. This is based on a limited-area meteorological model and can provide a forecasting horizon in the order of six hours or less. This study applies the results of a previously developed QPF based on a 1D cloud model using hourly NOAA-AVHRR (Advanced Very High Resolution Radiometer) and GMS (Geostationary Meteorological Satellite) datasets. Rainfall intensity values in the range of 3–12 mm/hr were extracted from these datasets based on the relation between cloud top temperature (CTT), cloud reflectance (CTR) and cloud height (CTH) using defined thresholds. The QPF, prepared for the rainstorm event of 27 September to 8 October 2000 was tested for rainfall runoff on the Langat River Basin, Malaysia, using a suitable NAM rainfall-runoff model. The response of the basin both to the rainfall-runoff simulation using the QPF estimate and the recorded observed rainfall is compared here, based on their corresponding discharge hydrographs. The comparison of the QPF and recorded rainfall showed R2 = 0.9028 for the entire basin. The runoff hydrograph for the recorded rainfall in the Kajang sub-catchment showed R2 = 0.9263 between the observed and the simulated, while that of the QPF rainfall was R2 = 0.819. This similarity in runoff suggests there is a high level of accuracy shown in the improved QPF, and that significant improvement of flood forecasting can be achieved through ‘Nowcasting’, thus increasing the response time for flood early warnings.

Publisher

Walter de Gruyter GmbH

Subject

General Earth and Planetary Sciences,Environmental Science (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3