Affiliation:
1. Warsaw University of Technology , Faculty of Physics , Koszykowa 75 Str. , , Warsaw , Poland
2. Warsaw University of Technology , Institute of Heat Engineering , Nowowiejska 21/25 Str. , Warsaw , Poland
Abstract
Abstract
The study demonstrates an application of genetic algorithms (GAs) in the optimization of the first core loading pattern. The Massachusetts Institute of Technology (MIT) BEAVRS pressurized water reactor (PWR) model was applied with PARCS nodal-diffusion core simulator coupled with GA numerical tool to perform pattern selection. In principle, GAs have been successfully used in many nuclear engineering problems such as core geometry optimization and fuel configuration. In many cases, however, these analyses focused on optimizing only a single parameter, such as the effective neutron multiplication factor (k
eff), and often limited to the simplified core model. On the contrary, the GAs developed in this work are equipped with multiple-purpose fitness function (FF) and allow the optimization of more than one parameter at the same time, and these were applied to a realistic full-core problem. The main parameters of interest in this study were the total power peaking factor (PPF) and the length of the fuel cycle. The basic purpose of this study was to improve the economics by finding longer fuel cycle with more uniform power/flux distribution. Proper FFs were developed, tested, and implemented and their results were compared with the reference BEAVRS first fuel cycle. In the two analysed test scenarios, it was possible to extend the first fuel cycle while maintaining lower or similar PPF, in comparison with the BEAVRS core, but for the price of increased initial reactivity.
Subject
Waste Management and Disposal,Condensed Matter Physics,Safety, Risk, Reliability and Quality,Instrumentation,Nuclear Energy and Engineering,Nuclear and High Energy Physics
Reference17 articles.
1. Israeli, E., & Gilad, E. (2017). Novel genetic algorithms for loading pattern optimization using state-of-the-art operators and a simple test case. J. Nucl. Eng. Radiat. Sci., 3(3), 1–10. DOI: 10.1115/1.4035883.
2. Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT Press.
3. Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and machine learning. Guest editorial. Mach. Learn., 3(2), 95–99. DOI: 10.1007/BF01920603.
4. Jayalal, M. L., Murty, S. A. V. S., & Baba, M. S. (2014). A survey of genetic algorithm applications in nuclear fuel management. J. Nucl. Eng. Technol., 4(1), 45–62.
5. Pereira, C. M. N. A., Schirru, R., & Martinez, A. S. (2000). Genetic algorithms applied to nuclear reactor design optimization. In Da Ruan (Ed.), Fuzzy systems and soft computing in nuclear engineering (pp. 315–334). Springer. https://doi.org/10.1007/9783-7908-1866-6_14.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献