Study on safe disposal of cephalosporins based on kinetic pyrolysis mechanism

Author:

Fan Jiangxue12,Zhang Meng12,Hou Xiaofei12,Wang Fang12,Bai Mengyuan12,Jiao Ruoxi12,Yang Zhongyu12,Duan Erhong12,Cheng Fengfei3,Zhou Wen4

Affiliation:

1. School of Environmental Science and Engineering , Hebei University of Science and Technology , Shijiazhuang, Hebei 050018, PR China

2. National and Local Joint Engineering Center of Volatile Organic Compounds & Odorous Pollution Control Technology , Shijiazhuang, Hebei 050018, PR China

3. Hebei provincial pollutant emission rights trading service center , Shijiazhuang, Hebei 050000, PR China

4. The State Grid Hebei Electric Power Company Electric Power Research Institute , Shijiazhuang, Hebei, 050021, PR China

Abstract

Abstract Based on the global goals for cleaner production and sustainable development, the pyrolysis behavior of cephalosporin residues was studied by TG-MS method. The influence of full temperature window on the safe disposal of residues was analyzed based on the “3-2-2” and “1+1” of thermal analysis kinetics, and the gas by-products of thermal degradation were monitored. Results showed that the pyrolysis of distillation residues were divided into low and high-temperature zones, including six stages. Maximum error rate (8.55%) by multiple scan rate was presented based on “3-2-2” pattern and maximum total fluctuation (33.7) by single scan rate was presented based on “1+1” pattern, which implied that the comprehensive multi-level comparison method was very reliable. The E value “E” of six stages showed an increasing trend ranging 166.8 to 872.8 kJ/mol. LgA (mean) was 27.28. Most mechanism function of stage 1, 2 were Z-L-T equation (3D), stage 3, 4, 6 were Avrami-Erofeev equation (AE3, AE4, AE2/3) and stage 5 was Reaction Order (O2). In addition, various small molecular micromolecule substances were detected such as C2H4O, C2H6, NH3, CH4, CO2 under full temperature windows and a possible pyrolysis path of residues was provided.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3