Chronic Exposure to Altered Gravity During the Pregnancy-to-Lactation Transition Affects Abundance of Cytoskeletal Proteins in the Rat Mammary Gland

Author:

Alula Kibrom M.1,Resau James H.2,Patel Osman V.1

Affiliation:

1. Department of Cell and Molecular Biology , Grand Valley State University , Allendale , MI ;

2. BioSpecimen Science , Van Andel Institute , Grand Rapids , MI

Abstract

Abstract The mammogenic, lactogenic, and lactopoetic effects of prolactin (PRL) in the mammary gland are mediated through a specific cytokine receptor, the PRL-receptor (PRLR). PRLR is anchored to the cytoskeleton and its activation, and subsequent signal transduction, is dependent on an integral/intact cytoskeletal organization. Previous studies revealed a down-regulation of PRLR and reduced metabolic output in the mammary gland of rats exposed to hypergravity (HG). Therefore, the objective of this study was to use quantitative immunohistochemistry to determine the effects of HG exposure during pregnancy on the pre- and postpartum abundance of the cytoskeletal proteins in the rat mammary gland. Pregnant rats were exposed to either 2xg [HG] or 1xg [Stationary control (SC)] from days 11 to 20 of gestation (G20) through postpartum days 1 (P1) and 3 (P3). Spectral characterization and quantitation of each antigen (actin, tubulin, cytokeratin, and vimentin) per lobule (n=3–7 lobules/micrograph; 4 micrographs/slide) was computed using the CRi Nuance multispectral system. At G20 and P3, increased (p<0.001) amounts of actin, tubulin, cytokeratin, and vimentin were detected in HG rats. Tubulin, cytokeratin, and vimentin were overexpressed (p<0.01) in HG group compared to SC at P1. These results suggest that atypical composition of cytoskeletal proteins contribute to the aberrant lactogenic signal transduction and associated reduced postpartum mammary metabolic output in rats exposed to altered inertial environment.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3