Affiliation:
1. Department of Cell and Molecular Biology , Grand Valley State University , Allendale , MI ;
2. BioSpecimen Science , Van Andel Institute , Grand Rapids , MI
Abstract
Abstract
The mammogenic, lactogenic, and lactopoetic effects of prolactin (PRL) in the mammary gland are mediated through a specific cytokine receptor, the PRL-receptor (PRLR). PRLR is anchored to the cytoskeleton and its activation, and subsequent signal transduction, is dependent on an integral/intact cytoskeletal organization. Previous studies revealed a down-regulation of PRLR and reduced metabolic output in the mammary gland of rats exposed to hypergravity (HG). Therefore, the objective of this study was to use quantitative immunohistochemistry to determine the effects of HG exposure during pregnancy on the pre- and postpartum abundance of the cytoskeletal proteins in the rat mammary gland. Pregnant rats were exposed to either 2xg [HG] or 1xg [Stationary control (SC)] from days 11 to 20 of gestation (G20) through postpartum days 1 (P1) and 3 (P3). Spectral characterization and quantitation of each antigen (actin, tubulin, cytokeratin, and vimentin) per lobule (n=3–7 lobules/micrograph; 4 micrographs/slide) was computed using the CRi Nuance multispectral system. At G20 and P3, increased (p<0.001) amounts of actin, tubulin, cytokeratin, and vimentin were detected in HG rats. Tubulin, cytokeratin, and vimentin were overexpressed (p<0.01) in HG group compared to SC at P1. These results suggest that atypical composition of cytoskeletal proteins contribute to the aberrant lactogenic signal transduction and associated reduced postpartum mammary metabolic output in rats exposed to altered inertial environment.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献