A Review on Big Data Optimization Techniques

Author:

Nerić Vedrana1,Sarajlić Nermin2

Affiliation:

1. Virgin Pulse , Tuzla , Bosnia and Herzegovina

2. Faculty of Electrical Engineering , University of Tuzla , Bosnia and Herzegovina

Abstract

Abstract Analysis of representative tools for SQL query processing on Hadoop (SQL-on-Hadoop systems), such as Hive, Impala, Presto, Shark, show that they are not still sufficiently efficient for complex analytical queries and interactive query processing. Existing SQL-on-Hadoop systems have many benefits from the application of modern query processing techniques that have been studied extensively for many years in the database community. It is expected that with the application of advanced techniques, the performance of SQL-on-Hadoop systems can be improved. The main idea of this paper is to give a review of big data concepts and technologies, and summarize big data optimization techniques that can be used for improving performance when processing big data.

Publisher

Walter de Gruyter GmbH

Reference54 articles.

1. [1] A. K. Bhadani, D. Jothimani: Big Data: Challenges, Opportunities, and Realities, chapter in an edited volume Effective Big Data Management and Opportunities for Implementation, 2016

2. [2] M. Chen, S. Mao, Y. Zhang, V. C. M. Leung: Big Data: Related Technologies, Challenges, and Future Prospects, Springer Briefs in Computer Science, 201410.1007/978-3-319-06245-7_2

3. [3] M. Madison, M. Barnhill, C. Napier, J. Godin: NoSQL Database Technologies, Journal of International Technology and Information Management, vol. 24, issue 1, article 1, 201510.58729/1941-6679.1032

4. [4] G. Vaish: Getting Started with NoSQL, Packt Publishing, 2013

5. [5] D. McCreary, A. Kelly: Making Sense of NoSQL, Manning Publications Co., 2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Genetic Algorithm-Based Approach for Optimizing Query Performance in Big Data Environments;2024 IEEE International Conference on Advanced Systems and Emergent Technologies (IC_ASET);2024-04-27

2. SQLquery tuning and optimization;Zbornik Veleučilišta u Rijeci;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3