Modification and characterization of montmorillonite fillers used in composites with vulcanized natural rubber

Author:

Hrachová Jana,Chodák Ivan,Komadel Peter

Abstract

AbstractParent Ca-montmorillonite (Jelšový Potok, Slovakia, Ca-JP) and Na-montmorillonite Kunipia-F (Japan, Na-KU) were ion-exchanged with octadecyltrimethylammonium (ODTMA) cations. Characteristics of the samples were studied by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (IR) and thermogravimetry (TG). Surface areas were measured by sorption of N2 and ethyleneglycol monoethyl ether. Scanning electron microscopy photographs (SEM) were used to characterize the texture of samples. The XRD patterns show that, upon intercalation, the basal spacing of montmorillonite is expanded and corresponds to the pseudotrimolecular arrangement of organic cations in the interlayers. The IR spectra of organically modified montmorillonite show C-H stretching and bending bands of both CH3 and CH2 groups in the 3000–2800 cm−1 and 1500–1400 cm−1 region, respectively. Modification of montmorillonite by organic cations decreased the hydrophilicity of their mineral surface and adsorbed water evaporated at lower temperatures. The SEM photographs reveal a tendency towards lump formation and agglomeration of the ODTMA-montmorillonite particles. The modification introducing organic moiety lead to a substantial decrease in the surface area of both montmorillonites; however, it remained remarkably high, being at the level typical for silica. Completely characterized fillers were used to prepare rubber compositions with enhanced physical properties, as described in Hrachová et al. (2008).

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,General Chemical Engineering,Biochemistry,General Chemistry

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3