Enhancing the mechanical properties of bismaleimide resin with montmorillonite modified by two intercalators (amino-terminated polyoxypropylene and octadecyl trimethyl ammonium chloride)

Author:

Chen Yufei,Zhao Hui,Liu Yulong,CHU Hongyue

Abstract

Purpose Bismaleimide (BMI) is a kind of thermosetting resin and its application is usually limited by low toughness. In this paper, two kinds of reinforcement intercalator amino-terminated polyoxypropylene (POP) and octadecyl trimethyl ammonium chloride (OTAC) were designed and synthesized to toughen BMI resin and the toughening effect was compared and analyzed. The purpose of this paper is to toughen BMI resin and analyze the toughening effect of two reinforcements intercalator amino-terminated polyoxypropylene (POP) and octadecyl trimethyl ammonium chloride (OTAC). Design/methodology/approach Sodium-based montmorillonite (Na-MMT) was modified by POP and OTAC, and the ion-exchange reaction obtained organic montmorillonite (POP-MMT and OTAC-MMT). The polymer matrix (MBAE) was synthesized, in which 4,4’-diamino diphenyl methane BMI was used as the monomer and 3,3’-diallyl bisphenol A and bisphenol A diallyl ether were used as active diluents. And then, POP-MMT/MBAE and OTAC-MMT/MBAE composites were prepared using MBAE as matrix and POP-MMT or OTAC-MMT as reinforcement. The Fourier-transform infrared, X-ray diffraction and scanning electron microscope (SEM) of the filler and microstructure and mechanical properties of the composite were characterized to the better reinforcement. Findings POP-MMT and OTAC-MMT enhanced BMI-cured products’ toughness by generating microcracks in the polymer to absorb more fracture energy. Meanwhile, POP-MMT and OTAC-MMT were the main stress components and the enhancement of the interface interaction was beneficial to transfer the external force from the matrix to the reinforcement and improved the mechanical properties of the composite. Furthermore, with the intercalation rate increasing, the compatibility of the two phases was increased and the performance of MBAE was also elevated. Research limitations/implications BMI is generally used as aerospace structural materials, functional materials, impregnating paint and other fields. However, high crosslinking density leads to moulding material’s brittleness and limits a wider range of applications. Therefore, it has become an urgent priority to explore and improve the mechanical properties of BMI resin. Originality/value POP and OTAC have successfully intercalated Na-MMT layers to get POP-MMT and OTAC-MMT, and the interplanar crystal spacing and the intercalation rate were calculated, respectively. The results were corresponding with the SEM images of POP-MMT and OTAC-MMT. After that, the morphology of composites illustrated the compatibility was related to the intercalation rate. According to the mechanism of modified MMT toughening epoxy resin, when they were dispersed uniformly in the matrix, the composite’s mechanical properties had been significantly improved. Additionally, OTAC-MMT with a higher intercalation rate had better compatibility and interfacial force with the matrix, so that the mechanical properties of OTAC-MMT/MBAE were the best.

Publisher

Emerald

Subject

Materials Chemistry,Surfaces, Coatings and Films

Reference30 articles.

1. Preparation and characterization of rigid poly (vinyl chloride)/MMT nanocomposites. II. XRD, morphological and mechanical characteristics;Journal of Polymer Science Part B: Polymer Physics,2006

2. High performance fluorinated bismaleimide-triazine resin with excellent dielectric properties;Journal of Polymer Research,2017

3. Changes on montmorillonite characteristics through modification;Applied Clay Science,2016

4. Modification and characterization of montmorillonite fillers used in composites with vulcanized natural rubber;Chemical Papers,2009

5. Mechanical properties of nano-MMT reinforced polymer composite and polymer concrete;Construction and Building Materials,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3