Equations for predicting interrill erosion on steep slopes in the Three Gorges Reservoir, China

Author:

Feng Qian123,Linyao Dong13,Jigen Liu1,Bei Sun1,Honghu Liu1,Jiesheng Huang2,Hao Li1

Affiliation:

1. Department of Soil and Water Conservation, Changjiang River Scientific Research Institute , Wuhan , Hubei 430072 , China .

2. School of Water Resources and Hydropower Engineering of Wuhan University , Wuhan , Hubei 430010 , China .

3. Research Center on Mountain Torrent and Geologic Disaster Prevention, Ministry of Water Resources , Wuhan , Hubei 430010 , China .

Abstract

Abstract The Three Gorges Reservoir region suffers from severe soil erosion that leads to serious soil degradation and eutrophication. Interrill erosion models are commonly used in developing soil erosion control measures. Laboratory simulation experiments were conducted to investigate the relationship between interrill erosion rate and three commonly hydraulic parameters (flow velocity V, shear stress τ and stream power W). The slope gradients ranged from 17.6% to 36.4%, and the rainfall intensities varied from 0.6 to 2.54 mm·min−1. The results showed that surface runoff volume and soil loss rates varied greatly with the change of slope and rainfall intensity. Surface runoff accounted for 67.2–85.4% of the precipitation on average. Soil loss rates increased with increases of rainfall intensity and slope gradient, Regression analysis showed that interrill erosion rate could be calculated by a linear function of V and W. Predictions based on V (R 2 = 0.843, ME = 0.843) and W (R 2 = 0.862, ME = 0.862) were powerful. τ (R 2 = 0.721, ME = 0.721) did not seem to be a good predictor for interrill erosion rates. Five ordinarily interrill erosion models were analyzed, the accuracy of the models in predicting soil loss rate was: Model 3 (ME = 0.977) > Model 4 (ME = 0.966) > Model 5 (ME = 0.963) > Model 2 (ME = 0.923) > Model 1 (ME = 0.852). The interrill erodibility used in the model 3 (WEPP) was calculated as 0.332×106 kg·s·m−4. The results can improve the precision of interrill erosion estimation on purple soil slopes in the Three Gorges Reservoir area.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3