Empirical Model of Unconsolidated Tephra Erosion: Verification and Application on Micro Catchment

Author:

Yunita F. TataORCID,Soekarno Indratmo,Nugroho Joko,Santosa Untung B.

Abstract

Erosion is an important process that shapes the earth's surface. Given the complexity of the process, efforts to understand it are essential. Over the last 50 years, numerous models of soil particle erosion by surface runoff emerged, some of which share similar forms and parameters. The differences lie in the coefficient values of the parameters, attributed to the characteristics of the soil material such as texture, structure, and organic matter content. However, these erosion models tend to underpredict in the case of new volcanic deposit erosion. The erosion model for unconsolidated tephra, proposed by Yunita, was developed through laboratory experiments using volcanic material from Merapi Volcano, Indonesia. Nevertheless, the model has not been implemented for other cases. Therefore, this study aims to verify the erosion model for volcanic material in other cases, explore the possibility of broader implementation, identify the factors that influence its accuracy, and determine the model’s limitations. To verify the model’s potential for broader application, we applied it to micro-scale catchments in St. Hellens (USA), Sakurajima (Japan), and a laboratory scale plot in Merapi (Indonesia). The verification yielded satisfactory results for all three cases, especially for new tephra deposits. In the case of St. Helens, the extrapolation of model coefficients was proven to still be applicable even for thicker tephra layers. However, the erosion prediction was overestimated for tephra layer deposits older than 1 year, as the erosion rate decreases over time due to the compaction and stabilization of the tephra layer. In the Sakurajima, the model was also suitable for predicting long-term erosion amounts (daily and monthly). Meanwhile, in Merapi, the model provided accurate predictions for slopes of 20º and 25º but was less accurate for 30º slopes, where the measured erosion was due to both erosion and slope failure. These verification results demonstrate the potential of applying the empirical erosion model to micro catchments with relatively homogenous slopes and tephra properties. The sensitivity test revealed that slope, runoff, rainfall intensity, and volcanic ash thickness are strongly influence the erosion rate. This study also simplified the volcanic ash erosion model as a function of slope (S0), runoff (q), and rainfall (i) by assuming the value of (1-τc/τ0) is equal to 1. Further study using GIS tools is required for its application on several catchments with heterogeneous characteristics. Doi: 10.28991/CEJ-2024-010-07-02 Full Text: PDF

Publisher

Ital Publication

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3