Identification of Altered Transcripts and Pathways in Triple Negative Breast Cancer
-
Published:2023-02-01
Issue:1
Volume:77
Page:33-40
-
ISSN:2255-890X
-
Container-title:Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences.
-
language:en
-
Short-container-title:
Author:
Kuzņecova Elza1, Daneberga Zanda1, Berga-Švītiņa Egija1, Nakazawa-Miklaševiča Miki1, Irmejs Arvīds12, Gardovskis Jānis134, Miklaševičs Edvīns1
Affiliation:
1. 1 Institute of Oncology , Rīga Stradiņš University , 13 Pilsoņu Str., Rīga, LV-1002 , Latvia 2. 2 Breast Unit, Pauls Stradiņš Clinical University Hospital , 13 Pilsoņu Str., Rīga, LV-1002 , Latvia 3. 3 Department of Surgery , Rīga Stradiņš University , 16 Dzirciema Str., Rīga, LV-1007 , Latvia 4. 4 Department of Surgery , Pauls Stradiņš Clinical University Hospital , 13 Pilsoņu Str., Rīga, LV-1002 , Latvia
Abstract
Abstract
Triple negative breast cancer (TNBC) is a breast cancer subtype characterised by lack of oestrogen receptor, progesterone receptor, and human epidermal growth factor receptor, and by worse prognosis than other cancer types. The aim of this study was to identify hub genes and molecular pathways for possible prognostic markers for TNBC. Nineteen breast cancer transcriptomes were sequenced using Illumina platform and analysed to identify differentially expressed genes in the TNBC subtype. Gene ontology enrichment analysis was conducted using the ToppGene tool. Then, the STRING online database was used for protein-protein interaction (PPI) network construction. Cytohubba and the MCODE plug-in were used to screen functional modules and hub genes. In total, 229 DEGs were identified by differential gene expression analysis in the TNBC group. Eight genes were screened out from the PPI network — FOXA1, ESR1, TFF1, GATA3, TFF3, AR, SLC39A6, COL9A1. In conclusion, this study indicates that the molecular subtype specific gene expression pattern provides useful information for targeted, biomarker-driven treatment options.
Publisher
Walter de Gruyter GmbH
Reference36 articles.
1. Albergaria, A., Paredes, J., Sousa, B., Milanezi, F., Carneiro, V., Bastos, J., Costa, S., Vieira, D., Lopes, N., Lam, E. W., Lunet, N., Schmitt, F. (2009). Expression of FOXA1 and GATA-3 in breast cancer: The prognostic significance in hormone receptor-negative tumours. Breast Cancer Res., 11 (3), R40. DOI: 10.1186/bcr2327. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2716509/. 2. Asano, Y., Kashiwagi, S., Goto, W., Tanaka, S., Morisaki, T., Takashima, T., Noda, S., Onoda, N., Ohsawa, M., Hirakawa, K., Ohira, M. (2017). Expression and clinical significance of androgen receptor in triple-negative breast cancer. Cancers, 9 (1), 4. DOI: 10.3390/cancers9010004. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5295775/. 3. Bianchini, G., Balko, J. M., Mayer, I. A., Sanders, M. E., Gianni, L. (2016). Triple-negative breast cancer: Challenges and opportunities of a heterogeneous disease. Nat. Rev. Clin. Oncol., 13 (11), 674–690. https://doi.org/10.1038/nrclinonc.2016.66.10.1038/nrclinonc.2016.66546112227184417 4. Burstein, M. D., Tsimelzon, A., Poage, G. M., Covington, K. R., Contreras, A., Fuqua, S. A., Savage, M. I., Osborne, C. K., Hilsenbeck, S. G., Chang, J. C., Mills, G. B., Lau, C. C., Brown, P. H. (2015). Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin. Cancer Res., 21 (7), 1688–1698. DOI: 10.1158/1078-0432.CCR-14-0432. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4362882/. 5. Chin, C. H., Chen, S. H., Wu, H. H., Ho, C. W., Ko, M. T., Lin, C. Y. (2014). cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol., 8 (Suppl 4), S11. https://doi.org/10.1186/1752-0509-8-S4-S11.10.1186/1752-0509-8-S4-S11429068725521941
|
|