Sagittal and Frontal Plane Gait Initiation Kinetics in Healthy, Young Subjects

Author:

Smith Andrew W.1,Wong Del P.2

Affiliation:

1. Motion Analysis Research Center, Samuel Merritt University , Oakland , CA, United States of America

2. titi Sport Technology , Shenzhen , China

Abstract

Abstract The study purposes were to record the lower extremity sagittal and frontal joint moments and powers during gait initiation (GI); evaluate GI support moments in both planes; and analyze planar energy patterns in a group of 15 healthy, young adults. 3D motion and ground reaction force data were used to calculate support moments (SM) and joint moments and powers as well as center of mass (COM) kinematics. STEP1 had no visible SM. It appeared in STEP2 and, by STEP3, resembled that seen in steady-state gait. Joint moments demonstrated a similar development towards typical patterns over the three steps. Correlations of moment data between planes indicate that the frontal plane component of the SM acts to keep the COM centered. It is suggested that Winter’s 1980 SM definition be extended to include both a support (sagittal) component and a centering (frontal) component. Energy was calculated for individual bursts of joint powers in both planes and each step had characteristic patterns in each plane, with patterns resembling steady-state gait appearing in the third step. Test-retest reliability (ICC range: 0.796 – 0.945) was high with CV values in the sagittal plane (36.6 – 37.5%) being less variable than in the frontal plane (39.0 – 82.0%). COM kinematics revealed that acceleration peaked in STEP2 (ICC range: 0.950 – 0.980, CV < 20.0%). Data supported hypotheses regarding the dominance of the frontal plane power in STEP1, with substantial power coming from hip flexors. As well, powers in the sagittal plane were generally of larger magnitude than in the frontal plane.

Publisher

Walter de Gruyter GmbH

Subject

Physiology (medical),Physical Therapy, Sports Therapy and Rehabilitation

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3