Locating Pd in Transformers through Detailed Model and Neural Networks

Author:

Nafisi Hamed1,Abedi Mehrdad1,Gharehpetian Gevorg B.1

Affiliation:

1. Electrical Engineering Department, Amirkabir University of Technology, Tehran, No. 424, Hafez Ave, 15914, Tehran, Iran

Abstract

Abstract In a power transformer as one of the major component in electric power networks, partial discharge (PD) is a major source of insulation failure. Therefore the accurate and high speed techniques for locating of PD sources are required regarding to repair and maintenance. In this paper an attempt has been made to introduce the novel methods based on two different artificial neural networks (ANN) for identifying PD location in the power transformers. In present report Fuzzy ARTmap and Bayesian neural networks are employed for PD locating while using detailed model (DM) for a power transformer for simulation purposes. In present paper PD phenomenon is implemented in different points of transformer winding using threecapacitor model. Then impulse test is applied to transformer terminals in order to use produced current in neutral point for training and test of employed ANNs. In practice obtained current signals include noise components. Thus the performance of Fuzzy ARTmap and Bayesian networks for correct identification of PD location in a noisy condition for detected currents is also investigated. In this paper RBF learning procedure is used for Bayesian network, while Markov chain Monte Carlo (MCMC) method is employed for training of Fuzzy ARTmap network for locating PD in a power transformer winding and results are compared.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3