FEM based 3D modelling of partial discharge detection and localization in an oil-filled power transformer using piezoelectric acoustic sensor

Author:

Meitei Sorokhaibam Nilakanta1ORCID,Borah Kunal2,Chatterjee Saibal3

Affiliation:

1. 124284 NERIST , Department of Electrical Engineering , Nirjuli , Arunachal Pradesh - , India

2. 124284 NERIST , Department of Physics , Nirjuli , Arunachal Pradesh - , India

3. 385888 National Institute of Technology Mizoram , Department of Electrical and Electronics Engineering , Aizawl , Mizoram - , India

Abstract

Abstract The main cause of insulation degradation is due to partial discharges (PDs) occurring inside the transformer, and its detection and localization are the most effective, non-destructive methods to assess the insulation condition of the transformer. Among the PD detection methods, the acoustic PD detection technique is popular because of its various advantages. The acoustic PD detection method for accurate PD source localization becomes quite challenging when PD occurs inside the transformer core and windings. As the acoustic sound wave can be distorted and vibration with its distribution, so the type of PD sensors with their setting in the transformer should be thoroughly investigated and chosen. In this work, via simulation, the acoustic sound distribution inside the power transformer due to PD occurs is studied. Based on the knowledge of acoustic pressure wave distribution, a Lead Zirconate Titanate (PZT-5H) sensor is designed using Finite element method based COMSOL Multiphysics software and placed it on the outer walls of the transformer for PD detection and localization. The PD induction position has been recognized from the sensor signal using an artificial neural network. The results of PD detection and localization by the proposed piezoelectric sensor and COMSOL probe point are in good agreement.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3