Geodesics in Asymmetric Metric Spaces

Author:

Mennucci Andrea C. G.1

Affiliation:

1. Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy

Abstract

Abstract In a recent paper [17] we studied asymmetric metric spaces; in this context we studied the length of paths, introduced the class of run-continuous paths; and noted that there are different definitions of “length spaces” (also known as “path-metric spaces” or “intrinsic spaces”). In this paper we continue the analysis of asymmetric metric spaces.We propose possible definitions of completeness and (local) compactness.We define the geodesics using as admissible paths the class of run-continuous paths.We define midpoints, convexity, and quasi-midpoints, but without assuming the space be intrinsic.We distinguish all along those results that need a stronger separation hypothesis. Eventually we discuss how the newly developed theory impacts the most important results, such as the existence of geodesics, and the renowned Hopf-Rinow (or Cohn-Vossen) theorem.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Geometry and Topology,Analysis

Reference24 articles.

1. [1] Luigi Ambrosio and Paolo Tilli. Selected topics in "analysis in metric spaces". Collana degli appunti. Edizioni Scuola Normale Superiore, Pisa, 2000.

2. [2] D. Bao, S. S. Chern, and Z. Shen. An introduction to Riemann-Finsler Geometry. (Springer-Verlag), 2000.

3. [3] Dmitri Burago, Yuri Burago, and Sergei Ivanov. A course in metric geometry, volume 33 of Graduate Studies inMathematics. American Mathematical Society, Providence, RI, 2001.

4. [4] H. Busemann. Local metric geometry. Trans. Amer. Math. Soc., 56:200-274, 1944.

5. [5] H. Busemann. The geometry of geodesics, volume 6 of Pure and applied mathematics. Academic Press (New York), 1955.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Absolutely continuous curves in Finsler-like spaces;Differential Geometry and its Applications;2024-10

2. Minimal area of Finsler disks with minimizing geodesics;Journal of the European Mathematical Society;2023-05-03

3. Separation functions and mild topologies;Analysis and Geometry in Metric Spaces;2023-01-01

4. On the Gromov-Hausdorff theory in Finsler geometry;SCIENTIA SINICA Mathematica;2023-01-01

5. Geodesic fields for Pontryagin type C0-Finsler manifolds;ESAIM: Control, Optimisation and Calculus of Variations;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3