Abstract
Let M be a differentiable manifold, TxM be its tangent space at x ∈ M and TM = {(x, y);x ∈ M;y ∈ TxM} be its tangent bundle. A C0-Finsler structure is a continuous function F : TM → [0, ∞) such that F(x, ⋅) : TxM → [0, ∞) is an asymmetric norm. In this work we introduce the Pontryagin type C0-Finsler structures, which are structures that satisfy the minimum requirements of Pontryagin’s maximum principle for the problem of minimizing paths. We define the extended geodesic field ℰ on the slit cotangent bundle T*M\0 of (M, F), which is a generalization of the geodesic spray of Finsler geometry. We study the case where ℰ is a locally Lipschitz vector field. We show some examples where the geodesics are more naturally represented by ℰ than by a similar structure on TM. Finally we show that the maximum of independent Finsler structures is a Pontryagin type C0-Finsler structure where ℰ is a locally Lipschitz vector field.
Funder
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Fundação Araucária
Subject
Computational Mathematics,Control and Optimization,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献