Bioinformatic Characterization of a Kappa-Carrageenase from Pseudomonas fluorescens

Author:

Bakli Mahfoud12,Bouras Noureddine34,Paşcalău Raul5,Șmuleac Laura5

Affiliation:

1. Département de Biologie, Faculté des Sciences et Technologie , Université de Ain Temouchent , B.P 284, 46000, Aïn Temouchent , Algeria

2. Physiologie, Physiopathologie et Biochimie de la Nutrition , Université de Tlemcen , Tlemcen , Algeria .

3. Département de Biologie, Faculté des Sciences de la Nature et de la Vie et Sciences de la Terre , Université de Ghardaia , Ghardaïa , Algeria

4. Laboratoire de Biologie des Systèmes Microbiens (LBSM) , Ecole Normale Supérieure de Kouba , Alger , Algeria

5. Banat’s University of Life Sciences “King Michael I of Romania” , Faculty of Agriculture , 119 Calea Aradului, 300645 , Timişoara , Romania

Abstract

Abstract Kappa-carrageenase (EC 3.2.1.83) is a glycoside hydrolase family 16 (GH16) member that could specifically hydrolyse kappa-carrageenans to kappa-carrageenan oligosaccharides. Kappa-carrageenase enzymes have attracted much interest due to their numerous potential applications in biomedical and physiological fields, bioethanol production, and textile industry. In the present study, physicochemical, secondary structure, structural properties including homology modeling, refinement, and model quality validation, and functional analyses of the kappacarrageenanse from Pseudomonas fluorescens using various bioinformatic tools were conducted. The protein was found to be stable and acidic in nature. Secondary structure prediction revealed that the presence of random coil is more dominated in the protein sequence followed by extended strand, α-helix, and β-turn. Protein-protein interaction prediction revealed ten potential functional partners. This bioinformatic characterization provides for the first time insights into fundamental characteristics of the predicted Kappa-carrageenase of P. fluorescens, which may be useful for elucidating its applications and for further expression and characterization studies.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3