Drug Diffusion Transport Through Human Skin

Author:

Walicka A.1,Iwanowska-Chomiak B.2

Affiliation:

1. University of Zielona Góra , Faculty of Mechanical Engineering , ul. Szafrana 4, 65-516 Zielona Góra , Poland

2. University Hospital of Zielona Góra , Oncology Department ul. Zyty 26, 65-046 Zielona Góra , Poland

Abstract

Abstract The stratum corneum (SC) forms the outermost layer of the human skin and is essentially a multilamellar lipid milieu punctuated by protein-filled corneocytes that augment membrane integrity and significantly increase membrane tortuosity. The lipophilic character of the SC, coupled with its intrinsic tortuosity, ensure that it almost always provides the principal barrier to the entry of drug molecules into the organism. Drugs can be administered either as suspensions or as solutions and the formulation can range in complexity from a gel or and ointment to a multilayer transdermal path. In this paper, we discuss theoretical principles used to describe transdermal release and we show that relatively simple membrane transport models based on the appropriate solution to the Fick’s second law of diffusion can be used to explain drug release kinetics into such a complex biological membrane as the human skin. To apply the Fick’s law we introduced into our considerations a brick-and-mortar model with two factors of tortuosity. Assuming that the mortar thickness is variable we also introduced the hindrance factor allowing us to model this variability. Having the modified Fick’s equation we presented its general solution and two special cases of this solution frequently applicable in permeation experiments. It seems that the solutions presented herein better approximate the real conditions of drug delivery then these well known.

Publisher

Walter de Gruyter GmbH

Subject

Fluid Flow and Transfer Processes,Transportation,Civil and Structural Engineering

Reference35 articles.

1. [1] Kalia Y.N. and Guy R.H. (2001): Modeling transdermal drug release. – Adv. Drug Delivery Rev., vol.48, pp.159-172.

2. [2] Carreras N., Alonso C., Marti M. and Lis M.J. (2015): Mass transport model through the skin by microencapsulation system. – J. Microencapsulation, vol.32, No.4, pp.358-363.

3. [3] Cal K. (2009): Across skin barrier; known methods, new performances. – In: Frontiers in Drug Design and Discovery, vol.4 (Caldwell G.W., ur-Rahman A., Yan Z., Choudhary M.J., Eds), pp.162-188.

4. [4] Cal K. and Stefanowska J. (2010): Methods for skin permeation enhancement of drug substances. – Technology of drug form (in Polish: Technologia postaci leku), vol.66, No.7, pp.514-520.

5. [5] Glogau R.G. (2007): Topically applied botulinum toxin type A for the treatment of primary axillary hyperhidrosis: results of randomized, blinded, vehicle-controlled study. – Dermatol. Surg., vol.33, pp.76-80.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3