Author:
Casanova Manuel,El-Baz Ayman,Elnakib Ahmed,Giedd Jay,Rumsey Judith,Williams Emily,Switala Andrew
Abstract
AbstractMorphometric studies of the corpus callosum suggest its involvement in a number of psychiatric conditions. In the present study we introduce a novel pattern recognition technique that offers a point-bypoint shape descriptor of the corpus callosum. The method uses arc lengths of electric field lines in order to avoid discontinuities caused by folding anatomical contours. We tested this technique by comparing the shape of the corpus callosum in a series of dyslexic men (n = 16) and age-matched controls (n = 14). The results indicate a generalized increase in size of the corpus callosum in dyslexia with a concomitant diminution at its rostral and caudal poles. The reported shape analysis and 2D-reconstruction provide information of anatomical importance that would otherwise passed unnoticed when analyzing size information alone.
Reference49 articles.
1. Rilling J.K., Insel T.R., The primate neocortex in comparative perspective using magnetic resonance imaging, J. Hum. Evol., 1999, 37, 191–223
2. Olivares R., Michalland S., Aboitiz F., Cross-species and intraspecies morphometric analysis of the corpus callosum, Brain. Behav. Evol., 2000, 55, 37–43
3. Striedter G.F., Principles of brain evolution, Sinauer Associates, Sunderland, 2005
4. Johnson S.B., Casanova M.F., Interhemispheric connectivity: the evolution and nature of the corpus callosum, In: T.B. Westland and R.N. Calton, (Eds.), Handbook on white matter: Structure, function, and changes, Nova Science, Hauppauge, 2009, 3–15
5. Williams E.L., Casanova M.F., Autism and dyslexia: a spectrum of cognitive styles as defined by minicolumnar morphometry, Med. Hypotheses, 2009, in press
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献