Experimental validation of Monte Carlo based treatment planning system in bone density equivalent media

Author:

Radojcic Djeni Smilovic12,Casar Bozidar34,Rajlic David1,Kolacio Manda Svabic1,Mendez Ignasi3,Obajdin Nevena1,Debeljuh Dea Dundara15,Jurkovic Slaven12

Affiliation:

1. Medical Physics Department, University Hospital Rijeka , Rijeka , Croatia

2. Department of Medical Physics and Biophysics, Faculty of Medicine, University of Rijeka , Rijeka , Croatia

3. Department for Dosimetry and Quality of Radiological procedures, Institute of Oncology Ljubljana , Ljubljana , Slovenia

4. Faculty of Mathematics and Physics, University of Ljubljana , Ljubljana , Slovenia

5. General Hospital Pula, Radiology Department , Pula , Croatia

Abstract

Abstract Introduction Advanced, Monte Carlo (MC) based dose calculation algorithms, determine absorbed dose as dose to medium-in-medium (D m,m) or dose to water-in-medium (D w,m). Some earlier studies identified the differences in the absorbed doses related to the calculation mode, especially in the bone density equivalent (BDE) media. Since the calculation algorithms built in the treatment planning systems (TPS) should be dosimetrically verified before their use, we analyzed dose differences between two calculation modes for the Elekta Monaco TPS. We compared them with experimentally determined values, aiming to define a supplement to the existing TPS verification methodology. Materials and methods In our study, we used a 6 MV photon beam from a linear accelerator. To evaluate the accuracy of the TPS calculation approaches, measurements with a Farmer type chamber in a semi-anthropomorphic phantom were compared to those obtained by two calculation options. The comparison was made for three parts of the phantom having different densities, with a focus on the BDE part. Results Measured and calculated doses were in agreement for water and lung equivalent density materials, regardless of the calculation mode. However, in the BDE part of the phantom, mean dose differences between the calculation options ranged from 5.7 to 8.3%, depending on the method used. In the BDE part of the phantom, neither of the two calculation options were consistent with experimentally determined absorbed doses. Conclusions Based on our findings, we proposed a supplement to the current methodology for the verification of commercial MC based TPS by performing additional measurements in BDE material.

Publisher

Walter de Gruyter GmbH

Subject

Radiology, Nuclear Medicine and imaging,Oncology

Reference26 articles.

1. Andreo P, Cramb J, Fraass BA, Ionescu-Farca F, Izewska J, Levin V, et al. Technical report series No. 430: commissioning and quality assurance of computerised planning system for radiation treatment of cancer. Vienna: International Atomic Energy Agency; 2004.

2. Brunckhorst E, Gershkevitsh E, Ibbott G, Korf G, Miller D, Schmidt R, et al. IAEA-TECDOC-1583 Commissioning of radiotherapy treatment planning systems: testing for typical external beam treatment techniques. Vienna: International Atomic Energy Agency; 2008.

3. Kry SF, Alvarez P, Molineu A, Amador C, Galvin J, Followill DS, et al. Algorithms used in heterogeneous dose calculations show systematic differences as measured with the radiological Physics Center’s anthropomorphic thorax phantom used for RTOG credentialing. Int J Radiat Oncol Biol Phys 2013; 85: 95-100. doi: 10.1016/j.ijrobp.2012.08.039

4. The Netherlands Commission of Radiation Dosimetry. Code of practice for the quality assurance and control for intensity modulated radiotherapy. Delft, Netherlands; 2013.

5. Smilowitz JB, Das IJ, Feygelman V, Fraass BA, Kry SF, Marshall IR, et al. AAPM Medical Physics Practice Guideline 5.a.: Commissioning and QA of treatment planning dose calculations - megavoltage photon and electron beams. J Appl Clin Med Phys 2015; 16: 14-34. doi: 10.1120/jacmp.v16i5.5768

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3