Affiliation:
1. Joint Institute for Nuclear Research , Joliot-Curie Str., 6, 1419890 Dubna, Russia
2. Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering , 30 Reactorului Str. MG-6 , Bucharest - Magurele , Romania
3. A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences , Vavilova Str., 28, 119991 , Moscow , Russia
Abstract
Abstract
Saccharomyces cerevisiae, waste biomass originated from beer fermentation industry, was used to remove metal ions from four copper-containing synthetic effluents: Cu-Fe, Cu-Fe-Ni, Cu-Fe-Zn, and Cu-Fe-Ni-Zn. The characterization of the biomass surface was investigated by Scanning Electron Microscopy and Fourier-transform Infrared Spectroscopy. The adsorption behavior of Saccharomyces cerevisiae for copper, iron, nickel and zinc ions in aqueous solution was studied as a function of pH, initial copper concentration, equilibrium time, and temperature. Langmiur, Freundlich, Temkin and Dubinin-Radushkevich equilibrium models have been assessed to describe the experimental sorption equilibrium profile, while pseudo-first order, pseudo-second order, Elovich and the intra-particle diffusion models were applied to describe experimental kinetics data. Maximum sorption capacities have been calculated by means of Langmuir equilibrium model and mean free sorption energies through the Dubinin-Radushkevich model. Thermodynamic analysis results showed that the adsorption of copper, iron and zinc was spontaneous and endothermic in nature, while of nickel exothermic. Saccharomyces cerevisiae can be successfully applied for complex wastewater treatment.
Subject
Environmental Chemistry,Environmental Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献