Treatment of Rhenium-Containing Effluents Using Environmentally Friendly Sorbent, Saccharomyces cerevisiae Biomass

Author:

Zinicovscaia IngaORCID,Yushin Nikita,Grozdov DmitriiORCID,Vergel Konstantin,Nekhoroshkov Pavel,Rodlovskaya Elena

Abstract

Yeast Saccharomyces cerevisiae biomass was applied for rhenium and accompanying elements (copper and molybdenum) removal from single- and multi-component systems (Re, Re-Mo, Re-Cu, and Re-Mo-Cu). Yeast biomass was characterized using X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy. The effects of biosorption experimental parameters such as solution pH (2.0–6.0), rhenium concentration (10–100 mg/L), time of interaction (5–120 min), and temperature (20–50 °C) have been discussed in detail. Maximum removal of rhenium (75–84%) and molybdenum (85%) was attained at pH 2.0, while pH 3.0–5.0 was more favorable for copper ions removal (53–68%). The Langmuir, Freundlich, and Temkin isotherm models were used to describe the equilibrium sorption of rhenium on yeast biomass. Langmuir isotherm shows the maximum yeast adsorption capacities toward rhenium ions ranged between 7.7 and 33 mg/g. Several kinetic models (pseudo-first-order, pseudo-second-order, and Elovich) were applied to define the best correlation for each metal. Biosorption of metal ions was well-fitted by Elovich and pseudo-first-order models. The negative free energy reflected the feasibility and spontaneous nature of the biosorption process. Saccharomyces cerevisiae biomass can be considered as a perspective biosorbent for metal removal.

Funder

Russian Foundation for Basic Research

Publisher

MDPI AG

Subject

General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3