Dilatant-Fluid Torsional Vibration Damper for a Four-Stroke Diesel Engine Crankshaft

Author:

Kozytskyi Sergiy1ORCID,Kiriian Sergii2ORCID

Affiliation:

1. 1 National University “Odesa Maritime Academy” , Ukraine

2. 2 British Columbia Institute of Technology , North Vancouver , Canada

Abstract

Abstract This paper presents a study of a viscous torsional vibration damper for a crankshaft of a four-stroke diesel engine. The reliable operation of a widely used silicone-type viscous damper depends on the ability of the silicone oil to absorb the energy of torsional vibrations. The non-Newtonian shear flow of the silicone oil interlayer, characterised by a reduction in the shear-rate-dependent viscosity and a moment of the drag forces, negatively affects damping characteristics. A torsional vibration damper, filled with a shear-thickening fluid, was considered and a rheological approach, based on viscosity growth with the shear rate increase, was applied. For such a damper, larger velocity gradients correspond to the higher values of a viscous force, which decreases torsional vibration. The parameter of damper effectiveness (defined by the fluid flow index, values of the damper gaps, torsional vibration amplitude and frequency) was implemented. It has been established that the efficiency of the torsional vibration damper filled with a dilatant fluid does not depend on the damper dimensions and gaps and significantly increases when a shear-thickening fluid is used instead of silicone oil or a Newtonian fluid. At higher values of the flow index, when the non-Newtonian flow becomes distinct, torsional vibrations are damped more effectively. Critical vibration amplitudes at high-velocity gradients, in turn, increase the damping effect as the moment of the drag forces and flow index are power-law related.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Ocean Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3