Personalized Recommendation Multi-Objective Optimization Model Based on Deep Learning

Author:

Yang Zepeng1,Lu Ping1,Liu Pingping1

Affiliation:

1. School of Computer Science and Engineering Xi’an Technological University Xi’an , China

Abstract

Abstract Recommended in this paper, because the existing single objective experience is poor, and the recommended model in a large difference of targets under the complex relationship of joint optimization and the conflict caused by faults, this paper proposes a personalized recommendation based on the deep learning multi-objective optimization algorithm, the estimated probability of users on the individual behavior as a model to study target, Multiple objectives are integrated into a model for learning. Firstly, the embedding layer is used to change the feature vectors, so that the bottom layer of the model shares the same feature embedding. Secondly, the factorization machine and deep learning are used to construct high-low order feature interaction. Then, the gating network and multilevel expert network constructed by a fully connected neural network are used to learn the characteristic relationship of user behavior. Finally, make connections between goals. Through experiments on public and real datasets, The results show that the multi-objective model proposed in this paper has better co-optimization performance and increases the AUC value by 0.1% compared with advanced personalized recommendation models such as MMoE and ESMM, to achieve the ultimate goal of increasing the prediction accuracy and improving user satisfaction.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3